|  | @@ -0,0 +1,235 @@
 | 
	
		
			
				|  |  | +import datetime
 | 
	
		
			
				|  |  | +import traceback
 | 
	
		
			
				|  |  | +import multiprocessing
 | 
	
		
			
				|  |  | +from threading import Timer
 | 
	
		
			
				|  |  | +from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
 | 
	
		
			
				|  |  | +from config import set_config
 | 
	
		
			
				|  |  | +from log import Log
 | 
	
		
			
				|  |  | +config_, _ = set_config()
 | 
	
		
			
				|  |  | +log_ = Log()
 | 
	
		
			
				|  |  | +redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +features = [
 | 
	
		
			
				|  |  | +    'apptype',
 | 
	
		
			
				|  |  | +    'videoid',
 | 
	
		
			
				|  |  | +    'ad_type',  # 0: all, 1: 自营,2: 微信
 | 
	
		
			
				|  |  | +    'sharerate',   # 被分享的概率
 | 
	
		
			
				|  |  | +    'no_ad_rate',  # 不出广告的概率
 | 
	
		
			
				|  |  | +    'no_adrate_share',  # 被分享的情况下且不出广告的概率
 | 
	
		
			
				|  |  | +    'ad_rate',  # 出广告的概率
 | 
	
		
			
				|  |  | +    'adrate_share',  # 被分享的情况下且出广告的概率
 | 
	
		
			
				|  |  | +]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def get_top10_abnormal_videos_return(dt, filter_param):
 | 
	
		
			
				|  |  | +    """获取昨日各端top10中的异常视频(裂变视频)"""
 | 
	
		
			
				|  |  | +    abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
 | 
	
		
			
				|  |  | +    abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
 | 
	
		
			
				|  |  | +    abnormal_video_features = [
 | 
	
		
			
				|  |  | +        'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
 | 
	
		
			
				|  |  | +    ]
 | 
	
		
			
				|  |  | +    data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
 | 
	
		
			
				|  |  | +    top10_abnormal_videos = {}
 | 
	
		
			
				|  |  | +    if data_count > 0:
 | 
	
		
			
				|  |  | +        abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
 | 
	
		
			
				|  |  | +                                             features=abnormal_video_features, dt=dt)
 | 
	
		
			
				|  |  | +        abnormal_video_df['multiple'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +        abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
 | 
	
		
			
				|  |  | +        abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
 | 
	
		
			
				|  |  | +        abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
 | 
	
		
			
				|  |  | +        abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
 | 
	
		
			
				|  |  | +        abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
 | 
	
		
			
				|  |  | +        app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
 | 
	
		
			
				|  |  | +        for app_type in app_type_list:
 | 
	
		
			
				|  |  | +            app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
 | 
	
		
			
				|  |  | +            app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
 | 
	
		
			
				|  |  | +            # print(app_type_df)
 | 
	
		
			
				|  |  | +            temp_video_id_list = []
 | 
	
		
			
				|  |  | +            for index, item in app_type_df.iterrows():
 | 
	
		
			
				|  |  | +                # print(item['rank'], item['videoid'], item['multiple'])
 | 
	
		
			
				|  |  | +                if item['multiple'] > filter_param:
 | 
	
		
			
				|  |  | +                    # print(item['videoid'], item['multiple'])
 | 
	
		
			
				|  |  | +                    abnormal_video_id_list = temp_video_id_list.copy()
 | 
	
		
			
				|  |  | +                    abnormal_video_id_list.append(int(item['videoid']))
 | 
	
		
			
				|  |  | +                    top10_abnormal_videos[app_type] = abnormal_video_id_list
 | 
	
		
			
				|  |  | +                    temp_video_id_list.append(int(item['videoid']))
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    temp_video_id_list.append(int(item['videoid']))
 | 
	
		
			
				|  |  | +            # print(top10_abnormal_videos)
 | 
	
		
			
				|  |  | +    log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
 | 
	
		
			
				|  |  | +    return top10_abnormal_videos
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def predict_video_share_rate_with_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
 | 
	
		
			
				|  |  | +    """预估视频有广告时被分享的概率"""
 | 
	
		
			
				|  |  | +    # 获取对应的视频特征
 | 
	
		
			
				|  |  | +    video_df = video_initial_df.copy()
 | 
	
		
			
				|  |  | +    # 获取所有广告类型对应的数据
 | 
	
		
			
				|  |  | +    video_df['ad_type'] = video_df['ad_type'].astype(int)
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['ad_type'] == 0]
 | 
	
		
			
				|  |  | +    video_df['apptype'] = video_df['apptype'].astype(int)
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['apptype'] == int(data_param)]
 | 
	
		
			
				|  |  | +    log_.info(f"video_df length: {len(video_df)}")
 | 
	
		
			
				|  |  | +    video_df['ad_rate'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    video_df['sharerate'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    video_df['adrate_share'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    video_df['ad_rate'] = video_df['ad_rate'].astype(float)
 | 
	
		
			
				|  |  | +    video_df['sharerate'] = video_df['sharerate'].astype(float)
 | 
	
		
			
				|  |  | +    video_df['adrate_share'] = video_df['adrate_share'].astype(float)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 计算视频有广告时被分享率
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['adrate'] != 0]
 | 
	
		
			
				|  |  | +    video_df['video_ad_share_rate'] = \
 | 
	
		
			
				|  |  | +        video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate']
 | 
	
		
			
				|  |  | +    video_df['video_ad_share_rate'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    # log_.info(f"video_df: {video_df}")
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['video_ad_share_rate'] != 0]
 | 
	
		
			
				|  |  | +    log_.info(f"video_df filtered 0 length: {len(video_df)}")
 | 
	
		
			
				|  |  | +    # 结果写入redis
 | 
	
		
			
				|  |  | +    key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{data_key}:{dt}"
 | 
	
		
			
				|  |  | +    redis_data = {}
 | 
	
		
			
				|  |  | +    for index, item in video_df.iterrows():
 | 
	
		
			
				|  |  | +        redis_data[int(item['videoid'])] = item['video_ad_share_rate']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 剔除异常视频数据
 | 
	
		
			
				|  |  | +    video_df['videoid'] = video_df['videoid'].astype(int)
 | 
	
		
			
				|  |  | +    top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
 | 
	
		
			
				|  |  | +    if top10_abnormal_video_ids is not None:
 | 
	
		
			
				|  |  | +        video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
 | 
	
		
			
				|  |  | +    group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
 | 
	
		
			
				|  |  | +    redis_data[-1] = group_ad_share_rate_mean
 | 
	
		
			
				|  |  | +    log_.info(f"redis_data count: {len(redis_data)}")
 | 
	
		
			
				|  |  | +    if len(redis_data) > 0:
 | 
	
		
			
				|  |  | +        redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +        redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
 | 
	
		
			
				|  |  | +    return video_df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def predict_video_share_rate_no_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
 | 
	
		
			
				|  |  | +    """预估视频无广告时被分享的概率"""
 | 
	
		
			
				|  |  | +    # 获取对应的视频特征
 | 
	
		
			
				|  |  | +    video_df = video_initial_df.copy()
 | 
	
		
			
				|  |  | +    # 获取所有广告类型对应的数据
 | 
	
		
			
				|  |  | +    video_df['ad_type'] = video_df['ad_type'].astype(int)
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['ad_type'] == 0]
 | 
	
		
			
				|  |  | +    video_df['apptype'] = video_df['apptype'].astype(int)
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['apptype'] == int(data_param)]
 | 
	
		
			
				|  |  | +    log_.info(f"video_df length: {len(video_df)}")
 | 
	
		
			
				|  |  | +    video_df['no_ad_rate'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    video_df['sharerate'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    video_df['no_adrate_share'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    video_df['no_ad_rate'] = video_df['no_ad_rate'].astype(float)
 | 
	
		
			
				|  |  | +    video_df['sharerate'] = video_df['sharerate'].astype(float)
 | 
	
		
			
				|  |  | +    video_df['no_adrate_share'] = video_df['adrate_share'].astype(float)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 计算视频有广告时被分享率
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['adrate'] != 0]
 | 
	
		
			
				|  |  | +    video_df['video_no_ad_share_rate'] = \
 | 
	
		
			
				|  |  | +        video_df['no_adrate_share'] * video_df['sharerate'] / video_df['no_ad_rate']
 | 
	
		
			
				|  |  | +    video_df['video_no_ad_share_rate'].fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    # log_.info(f"video_df: {video_df}")
 | 
	
		
			
				|  |  | +    video_df = video_df[video_df['video_no_ad_share_rate'] != 0]
 | 
	
		
			
				|  |  | +    log_.info(f"video_df filtered 0 length: {len(video_df)}")
 | 
	
		
			
				|  |  | +    # 结果写入redis
 | 
	
		
			
				|  |  | +    key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{data_key}:{dt}"
 | 
	
		
			
				|  |  | +    redis_data = {}
 | 
	
		
			
				|  |  | +    for index, item in video_df.iterrows():
 | 
	
		
			
				|  |  | +        redis_data[int(item['videoid'])] = item['video_no_ad_share_rate']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 剔除异常视频数据
 | 
	
		
			
				|  |  | +    video_df['videoid'] = video_df['videoid'].astype(int)
 | 
	
		
			
				|  |  | +    top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
 | 
	
		
			
				|  |  | +    if top10_abnormal_video_ids is not None:
 | 
	
		
			
				|  |  | +        video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
 | 
	
		
			
				|  |  | +    group_ad_share_rate_mean = video_df['video_no_ad_share_rate'].mean()
 | 
	
		
			
				|  |  | +    redis_data[-1] = group_ad_share_rate_mean
 | 
	
		
			
				|  |  | +    log_.info(f"redis_data count: {len(redis_data)}")
 | 
	
		
			
				|  |  | +    if len(redis_data) > 0:
 | 
	
		
			
				|  |  | +        redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +        redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
 | 
	
		
			
				|  |  | +    return video_df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
 | 
	
		
			
				|  |  | +    """预估视频有广告时分享率"""
 | 
	
		
			
				|  |  | +    # 获取视频特征
 | 
	
		
			
				|  |  | +    video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
 | 
	
		
			
				|  |  | +    for data_key, data_param in update_params.items():
 | 
	
		
			
				|  |  | +        log_.info(f"data_key = {data_key} update start...")
 | 
	
		
			
				|  |  | +        predict_video_share_rate_with_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
 | 
	
		
			
				|  |  | +                                         data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
 | 
	
		
			
				|  |  | +        predict_video_share_rate_no_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
 | 
	
		
			
				|  |  | +                                       data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
 | 
	
		
			
				|  |  | +        log_.info(f"data_key = {data_key} update end!")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def timer_check(dt, video_key, video_params, top10_abnormal_videos):
 | 
	
		
			
				|  |  | +    log_.info(f"video_key = {video_key}")
 | 
	
		
			
				|  |  | +    project = config_.ad_model_data[video_key].get('project')
 | 
	
		
			
				|  |  | +    table = config_.ad_model_data[video_key].get('table')
 | 
	
		
			
				|  |  | +    # 查看当前更新的数据是否已准备好
 | 
	
		
			
				|  |  | +    data_count = data_check(project=project, table=table, dt=dt)
 | 
	
		
			
				|  |  | +    if data_count > 0:
 | 
	
		
			
				|  |  | +        log_.info(f"ad video data count = {data_count}")
 | 
	
		
			
				|  |  | +        # 数据准备好,进行更新
 | 
	
		
			
				|  |  | +        update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
 | 
	
		
			
				|  |  | +                           top10_abnormal_videos=top10_abnormal_videos)
 | 
	
		
			
				|  |  | +        log_.info(f"video_key = {video_key} ad video data update end!")
 | 
	
		
			
				|  |  | +        msg_list = [
 | 
	
		
			
				|  |  | +            f"env: rov-offline {config_.ENV_TEXT}",
 | 
	
		
			
				|  |  | +            f"video_key: {video_key}",
 | 
	
		
			
				|  |  | +            f"now_date: {dt}",
 | 
	
		
			
				|  |  | +            f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +        send_msg_to_feishu_new(
 | 
	
		
			
				|  |  | +            webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
 | 
	
		
			
				|  |  | +            key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
 | 
	
		
			
				|  |  | +            title='新策略 -- 广告模型视频分享率预测数据更新完成',
 | 
	
		
			
				|  |  | +            msg_list=msg_list
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        # 数据没准备好,1分钟后重新检查
 | 
	
		
			
				|  |  | +        Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def main():
 | 
	
		
			
				|  |  | +    try:
 | 
	
		
			
				|  |  | +        now_date = datetime.datetime.today()
 | 
	
		
			
				|  |  | +        dt = datetime.datetime.strftime(now_date, '%Y%m%d')
 | 
	
		
			
				|  |  | +        log_.info(f"now_date: {dt}")
 | 
	
		
			
				|  |  | +        # 获取昨天top10中的异常视频(裂变视频)
 | 
	
		
			
				|  |  | +        top10_abnormal_videos = get_top10_abnormal_videos_return(
 | 
	
		
			
				|  |  | +            dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        update_params = config_.AD_VIDEO_DATA_PARAMS_NEW_STRATEGY
 | 
	
		
			
				|  |  | +        pool = multiprocessing.Pool(processes=len(update_params))
 | 
	
		
			
				|  |  | +        for video_key, video_params in update_params.items():
 | 
	
		
			
				|  |  | +            pool.apply_async(
 | 
	
		
			
				|  |  | +                func=timer_check,
 | 
	
		
			
				|  |  | +                args=(dt, video_key, video_params, top10_abnormal_videos)
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +        pool.close()
 | 
	
		
			
				|  |  | +        pool.join()
 | 
	
		
			
				|  |  | +        # for video_key, video_params in update_params.items():
 | 
	
		
			
				|  |  | +        #     timer_check(dt, video_key, video_params, top10_abnormal_videos)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    except Exception as e:
 | 
	
		
			
				|  |  | +        log_.error(f"新策略 -- 广告模型视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
 | 
	
		
			
				|  |  | +        msg_list = [
 | 
	
		
			
				|  |  | +            f"env: rov-offline {config_.ENV_TEXT}",
 | 
	
		
			
				|  |  | +            f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
 | 
	
		
			
				|  |  | +            f"exception: {e}",
 | 
	
		
			
				|  |  | +            f"traceback: {traceback.format_exc()}",
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +        send_msg_to_feishu_new(
 | 
	
		
			
				|  |  | +            webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
 | 
	
		
			
				|  |  | +            key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
 | 
	
		
			
				|  |  | +            title='新策略 -- 广告模型视频分享率预测数据更新失败',
 | 
	
		
			
				|  |  | +            msg_list=msg_list
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +if __name__ == '__main__':
 | 
	
		
			
				|  |  | +    # timer_check()
 | 
	
		
			
				|  |  | +    main()
 |