|
@@ -0,0 +1,235 @@
|
|
|
|
+import datetime
|
|
|
|
+import traceback
|
|
|
|
+import multiprocessing
|
|
|
|
+from threading import Timer
|
|
|
|
+from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
|
|
|
|
+from config import set_config
|
|
|
|
+from log import Log
|
|
|
|
+config_, _ = set_config()
|
|
|
|
+log_ = Log()
|
|
|
|
+redis_helper = RedisHelper()
|
|
|
|
+
|
|
|
|
+features = [
|
|
|
|
+ 'apptype',
|
|
|
|
+ 'videoid',
|
|
|
|
+ 'ad_type', # 0: all, 1: 自营,2: 微信
|
|
|
|
+ 'sharerate', # 被分享的概率
|
|
|
|
+ 'no_ad_rate', # 不出广告的概率
|
|
|
|
+ 'no_adrate_share', # 被分享的情况下且不出广告的概率
|
|
|
|
+ 'ad_rate', # 出广告的概率
|
|
|
|
+ 'adrate_share', # 被分享的情况下且出广告的概率
|
|
|
|
+]
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def get_top10_abnormal_videos_return(dt, filter_param):
|
|
|
|
+ """获取昨日各端top10中的异常视频(裂变视频)"""
|
|
|
|
+ abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
|
|
|
|
+ abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
|
|
|
|
+ abnormal_video_features = [
|
|
|
|
+ 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
|
|
|
|
+ ]
|
|
|
|
+ data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
|
|
|
|
+ top10_abnormal_videos = {}
|
|
|
|
+ if data_count > 0:
|
|
|
|
+ abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
|
|
|
|
+ features=abnormal_video_features, dt=dt)
|
|
|
|
+ abnormal_video_df['multiple'].fillna(0, inplace=True)
|
|
|
|
+ abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
|
|
|
|
+ abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
|
|
|
|
+ abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
|
|
|
|
+ abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
|
|
|
|
+ abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
|
|
|
|
+ app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
|
|
|
|
+ for app_type in app_type_list:
|
|
|
|
+ app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
|
|
|
|
+ app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
|
|
|
|
+ # print(app_type_df)
|
|
|
|
+ temp_video_id_list = []
|
|
|
|
+ for index, item in app_type_df.iterrows():
|
|
|
|
+ # print(item['rank'], item['videoid'], item['multiple'])
|
|
|
|
+ if item['multiple'] > filter_param:
|
|
|
|
+ # print(item['videoid'], item['multiple'])
|
|
|
|
+ abnormal_video_id_list = temp_video_id_list.copy()
|
|
|
|
+ abnormal_video_id_list.append(int(item['videoid']))
|
|
|
|
+ top10_abnormal_videos[app_type] = abnormal_video_id_list
|
|
|
|
+ temp_video_id_list.append(int(item['videoid']))
|
|
|
|
+ else:
|
|
|
|
+ temp_video_id_list.append(int(item['videoid']))
|
|
|
|
+ # print(top10_abnormal_videos)
|
|
|
|
+ log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
|
|
|
|
+ return top10_abnormal_videos
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def predict_video_share_rate_with_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
|
|
|
|
+ """预估视频有广告时被分享的概率"""
|
|
|
|
+ # 获取对应的视频特征
|
|
|
|
+ video_df = video_initial_df.copy()
|
|
|
|
+ # 获取所有广告类型对应的数据
|
|
|
|
+ video_df['ad_type'] = video_df['ad_type'].astype(int)
|
|
|
|
+ video_df = video_df[video_df['ad_type'] == 0]
|
|
|
|
+ video_df['apptype'] = video_df['apptype'].astype(int)
|
|
|
|
+ video_df = video_df[video_df['apptype'] == int(data_param)]
|
|
|
|
+ log_.info(f"video_df length: {len(video_df)}")
|
|
|
|
+ video_df['ad_rate'].fillna(0, inplace=True)
|
|
|
|
+ video_df['sharerate'].fillna(0, inplace=True)
|
|
|
|
+ video_df['adrate_share'].fillna(0, inplace=True)
|
|
|
|
+ video_df['ad_rate'] = video_df['ad_rate'].astype(float)
|
|
|
|
+ video_df['sharerate'] = video_df['sharerate'].astype(float)
|
|
|
|
+ video_df['adrate_share'] = video_df['adrate_share'].astype(float)
|
|
|
|
+
|
|
|
|
+ # 计算视频有广告时被分享率
|
|
|
|
+ video_df = video_df[video_df['adrate'] != 0]
|
|
|
|
+ video_df['video_ad_share_rate'] = \
|
|
|
|
+ video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate']
|
|
|
|
+ video_df['video_ad_share_rate'].fillna(0, inplace=True)
|
|
|
|
+ # log_.info(f"video_df: {video_df}")
|
|
|
|
+ video_df = video_df[video_df['video_ad_share_rate'] != 0]
|
|
|
|
+ log_.info(f"video_df filtered 0 length: {len(video_df)}")
|
|
|
|
+ # 结果写入redis
|
|
|
|
+ key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{data_key}:{dt}"
|
|
|
|
+ redis_data = {}
|
|
|
|
+ for index, item in video_df.iterrows():
|
|
|
|
+ redis_data[int(item['videoid'])] = item['video_ad_share_rate']
|
|
|
|
+
|
|
|
|
+ # 剔除异常视频数据
|
|
|
|
+ video_df['videoid'] = video_df['videoid'].astype(int)
|
|
|
|
+ top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
|
|
|
|
+ if top10_abnormal_video_ids is not None:
|
|
|
|
+ video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
|
|
|
|
+ group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
|
|
|
|
+ redis_data[-1] = group_ad_share_rate_mean
|
|
|
|
+ log_.info(f"redis_data count: {len(redis_data)}")
|
|
|
|
+ if len(redis_data) > 0:
|
|
|
|
+ redis_helper = RedisHelper()
|
|
|
|
+ redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
|
|
|
|
+ return video_df
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def predict_video_share_rate_no_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
|
|
|
|
+ """预估视频无广告时被分享的概率"""
|
|
|
|
+ # 获取对应的视频特征
|
|
|
|
+ video_df = video_initial_df.copy()
|
|
|
|
+ # 获取所有广告类型对应的数据
|
|
|
|
+ video_df['ad_type'] = video_df['ad_type'].astype(int)
|
|
|
|
+ video_df = video_df[video_df['ad_type'] == 0]
|
|
|
|
+ video_df['apptype'] = video_df['apptype'].astype(int)
|
|
|
|
+ video_df = video_df[video_df['apptype'] == int(data_param)]
|
|
|
|
+ log_.info(f"video_df length: {len(video_df)}")
|
|
|
|
+ video_df['no_ad_rate'].fillna(0, inplace=True)
|
|
|
|
+ video_df['sharerate'].fillna(0, inplace=True)
|
|
|
|
+ video_df['no_adrate_share'].fillna(0, inplace=True)
|
|
|
|
+ video_df['no_ad_rate'] = video_df['no_ad_rate'].astype(float)
|
|
|
|
+ video_df['sharerate'] = video_df['sharerate'].astype(float)
|
|
|
|
+ video_df['no_adrate_share'] = video_df['adrate_share'].astype(float)
|
|
|
|
+
|
|
|
|
+ # 计算视频有广告时被分享率
|
|
|
|
+ video_df = video_df[video_df['adrate'] != 0]
|
|
|
|
+ video_df['video_no_ad_share_rate'] = \
|
|
|
|
+ video_df['no_adrate_share'] * video_df['sharerate'] / video_df['no_ad_rate']
|
|
|
|
+ video_df['video_no_ad_share_rate'].fillna(0, inplace=True)
|
|
|
|
+ # log_.info(f"video_df: {video_df}")
|
|
|
|
+ video_df = video_df[video_df['video_no_ad_share_rate'] != 0]
|
|
|
|
+ log_.info(f"video_df filtered 0 length: {len(video_df)}")
|
|
|
|
+ # 结果写入redis
|
|
|
|
+ key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{data_key}:{dt}"
|
|
|
|
+ redis_data = {}
|
|
|
|
+ for index, item in video_df.iterrows():
|
|
|
|
+ redis_data[int(item['videoid'])] = item['video_no_ad_share_rate']
|
|
|
|
+
|
|
|
|
+ # 剔除异常视频数据
|
|
|
|
+ video_df['videoid'] = video_df['videoid'].astype(int)
|
|
|
|
+ top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
|
|
|
|
+ if top10_abnormal_video_ids is not None:
|
|
|
|
+ video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
|
|
|
|
+ group_ad_share_rate_mean = video_df['video_no_ad_share_rate'].mean()
|
|
|
|
+ redis_data[-1] = group_ad_share_rate_mean
|
|
|
|
+ log_.info(f"redis_data count: {len(redis_data)}")
|
|
|
|
+ if len(redis_data) > 0:
|
|
|
|
+ redis_helper = RedisHelper()
|
|
|
|
+ redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
|
|
|
|
+ return video_df
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
|
|
|
|
+ """预估视频有广告时分享率"""
|
|
|
|
+ # 获取视频特征
|
|
|
|
+ video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
|
|
|
|
+ for data_key, data_param in update_params.items():
|
|
|
|
+ log_.info(f"data_key = {data_key} update start...")
|
|
|
|
+ predict_video_share_rate_with_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
|
|
|
|
+ data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
|
|
|
|
+ predict_video_share_rate_no_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
|
|
|
|
+ data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
|
|
|
|
+ log_.info(f"data_key = {data_key} update end!")
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def timer_check(dt, video_key, video_params, top10_abnormal_videos):
|
|
|
|
+ log_.info(f"video_key = {video_key}")
|
|
|
|
+ project = config_.ad_model_data[video_key].get('project')
|
|
|
|
+ table = config_.ad_model_data[video_key].get('table')
|
|
|
|
+ # 查看当前更新的数据是否已准备好
|
|
|
|
+ data_count = data_check(project=project, table=table, dt=dt)
|
|
|
|
+ if data_count > 0:
|
|
|
|
+ log_.info(f"ad video data count = {data_count}")
|
|
|
|
+ # 数据准备好,进行更新
|
|
|
|
+ update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
|
|
|
|
+ top10_abnormal_videos=top10_abnormal_videos)
|
|
|
|
+ log_.info(f"video_key = {video_key} ad video data update end!")
|
|
|
|
+ msg_list = [
|
|
|
|
+ f"env: rov-offline {config_.ENV_TEXT}",
|
|
|
|
+ f"video_key: {video_key}",
|
|
|
|
+ f"now_date: {dt}",
|
|
|
|
+ f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
|
|
|
|
+ ]
|
|
|
|
+ send_msg_to_feishu_new(
|
|
|
|
+ webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
|
|
|
|
+ key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
|
|
|
|
+ title='新策略 -- 广告模型视频分享率预测数据更新完成',
|
|
|
|
+ msg_list=msg_list
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ else:
|
|
|
|
+ # 数据没准备好,1分钟后重新检查
|
|
|
|
+ Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def main():
|
|
|
|
+ try:
|
|
|
|
+ now_date = datetime.datetime.today()
|
|
|
|
+ dt = datetime.datetime.strftime(now_date, '%Y%m%d')
|
|
|
|
+ log_.info(f"now_date: {dt}")
|
|
|
|
+ # 获取昨天top10中的异常视频(裂变视频)
|
|
|
|
+ top10_abnormal_videos = get_top10_abnormal_videos_return(
|
|
|
|
+ dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
|
|
|
|
+ )
|
|
|
|
+ update_params = config_.AD_VIDEO_DATA_PARAMS_NEW_STRATEGY
|
|
|
|
+ pool = multiprocessing.Pool(processes=len(update_params))
|
|
|
|
+ for video_key, video_params in update_params.items():
|
|
|
|
+ pool.apply_async(
|
|
|
|
+ func=timer_check,
|
|
|
|
+ args=(dt, video_key, video_params, top10_abnormal_videos)
|
|
|
|
+ )
|
|
|
|
+ pool.close()
|
|
|
|
+ pool.join()
|
|
|
|
+ # for video_key, video_params in update_params.items():
|
|
|
|
+ # timer_check(dt, video_key, video_params, top10_abnormal_videos)
|
|
|
|
+
|
|
|
|
+ except Exception as e:
|
|
|
|
+ log_.error(f"新策略 -- 广告模型视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
|
|
|
|
+ msg_list = [
|
|
|
|
+ f"env: rov-offline {config_.ENV_TEXT}",
|
|
|
|
+ f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
|
|
|
|
+ f"exception: {e}",
|
|
|
|
+ f"traceback: {traceback.format_exc()}",
|
|
|
|
+ ]
|
|
|
|
+ send_msg_to_feishu_new(
|
|
|
|
+ webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
|
|
|
|
+ key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
|
|
|
|
+ title='新策略 -- 广告模型视频分享率预测数据更新失败',
|
|
|
|
+ msg_list=msg_list
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+ # timer_check()
|
|
|
|
+ main()
|