ad_video_data_update_with_new_strategy.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. import datetime
  2. import traceback
  3. import multiprocessing
  4. from threading import Timer
  5. from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
  6. from config import set_config
  7. from log import Log
  8. config_, _ = set_config()
  9. log_ = Log()
  10. redis_helper = RedisHelper()
  11. features = [
  12. 'apptype',
  13. 'videoid',
  14. 'ad_type', # 0: all, 1: 自营,2: 微信
  15. 'sharerate', # 被分享的概率
  16. 'no_ad_rate', # 不出广告的概率
  17. 'no_adrate_share', # 被分享的情况下且不出广告的概率
  18. 'ad_rate', # 出广告的概率
  19. 'adrate_share', # 被分享的情况下且出广告的概率
  20. ]
  21. def get_top10_abnormal_videos_return(dt, filter_param):
  22. """获取昨日各端top10中的异常视频(裂变视频)"""
  23. abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
  24. abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
  25. abnormal_video_features = [
  26. 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
  27. ]
  28. data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
  29. top10_abnormal_videos = {}
  30. if data_count > 0:
  31. abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
  32. features=abnormal_video_features, dt=dt)
  33. abnormal_video_df['multiple'].fillna(0, inplace=True)
  34. abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
  35. abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
  36. abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
  37. abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
  38. abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
  39. app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
  40. for app_type in app_type_list:
  41. app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
  42. app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
  43. # print(app_type_df)
  44. temp_video_id_list = []
  45. for index, item in app_type_df.iterrows():
  46. # print(item['rank'], item['videoid'], item['multiple'])
  47. if item['multiple'] > filter_param:
  48. # print(item['videoid'], item['multiple'])
  49. abnormal_video_id_list = temp_video_id_list.copy()
  50. abnormal_video_id_list.append(int(item['videoid']))
  51. top10_abnormal_videos[app_type] = abnormal_video_id_list
  52. temp_video_id_list.append(int(item['videoid']))
  53. else:
  54. temp_video_id_list.append(int(item['videoid']))
  55. # print(top10_abnormal_videos)
  56. log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
  57. return top10_abnormal_videos
  58. def predict_video_share_rate_with_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  59. """预估视频有广告时被分享的概率"""
  60. # 获取对应的视频特征
  61. video_df = video_initial_df.copy()
  62. # 获取所有广告类型对应的数据
  63. video_df['ad_type'] = video_df['ad_type'].astype(int)
  64. video_df = video_df[video_df['ad_type'] == 0]
  65. video_df['apptype'] = video_df['apptype'].astype(int)
  66. video_df = video_df[video_df['apptype'] == int(data_param)]
  67. log_.info(f"video_df length: {len(video_df)}")
  68. video_df['ad_rate'].fillna(0, inplace=True)
  69. video_df['sharerate'].fillna(0, inplace=True)
  70. video_df['adrate_share'].fillna(0, inplace=True)
  71. video_df['ad_rate'] = video_df['ad_rate'].astype(float)
  72. video_df['sharerate'] = video_df['sharerate'].astype(float)
  73. video_df['adrate_share'] = video_df['adrate_share'].astype(float)
  74. # 计算视频有广告时被分享率
  75. video_df = video_df[video_df['adrate'] != 0]
  76. video_df['video_ad_share_rate'] = \
  77. video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate']
  78. video_df['video_ad_share_rate'].fillna(0, inplace=True)
  79. # log_.info(f"video_df: {video_df}")
  80. video_df = video_df[video_df['video_ad_share_rate'] != 0]
  81. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  82. # 结果写入redis
  83. key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{data_key}:{dt}"
  84. redis_data = {}
  85. for index, item in video_df.iterrows():
  86. redis_data[int(item['videoid'])] = item['video_ad_share_rate']
  87. # 剔除异常视频数据
  88. video_df['videoid'] = video_df['videoid'].astype(int)
  89. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  90. if top10_abnormal_video_ids is not None:
  91. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  92. group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
  93. redis_data[-1] = group_ad_share_rate_mean
  94. log_.info(f"redis_data count: {len(redis_data)}")
  95. if len(redis_data) > 0:
  96. redis_helper = RedisHelper()
  97. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  98. return video_df
  99. def predict_video_share_rate_no_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  100. """预估视频无广告时被分享的概率"""
  101. # 获取对应的视频特征
  102. video_df = video_initial_df.copy()
  103. # 获取所有广告类型对应的数据
  104. video_df['ad_type'] = video_df['ad_type'].astype(int)
  105. video_df = video_df[video_df['ad_type'] == 0]
  106. video_df['apptype'] = video_df['apptype'].astype(int)
  107. video_df = video_df[video_df['apptype'] == int(data_param)]
  108. log_.info(f"video_df length: {len(video_df)}")
  109. video_df['no_ad_rate'].fillna(0, inplace=True)
  110. video_df['sharerate'].fillna(0, inplace=True)
  111. video_df['no_adrate_share'].fillna(0, inplace=True)
  112. video_df['no_ad_rate'] = video_df['no_ad_rate'].astype(float)
  113. video_df['sharerate'] = video_df['sharerate'].astype(float)
  114. video_df['no_adrate_share'] = video_df['adrate_share'].astype(float)
  115. # 计算视频有广告时被分享率
  116. video_df = video_df[video_df['adrate'] != 0]
  117. video_df['video_no_ad_share_rate'] = \
  118. video_df['no_adrate_share'] * video_df['sharerate'] / video_df['no_ad_rate']
  119. video_df['video_no_ad_share_rate'].fillna(0, inplace=True)
  120. # log_.info(f"video_df: {video_df}")
  121. video_df = video_df[video_df['video_no_ad_share_rate'] != 0]
  122. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  123. # 结果写入redis
  124. key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{data_key}:{dt}"
  125. redis_data = {}
  126. for index, item in video_df.iterrows():
  127. redis_data[int(item['videoid'])] = item['video_no_ad_share_rate']
  128. # 剔除异常视频数据
  129. video_df['videoid'] = video_df['videoid'].astype(int)
  130. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  131. if top10_abnormal_video_ids is not None:
  132. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  133. group_ad_share_rate_mean = video_df['video_no_ad_share_rate'].mean()
  134. redis_data[-1] = group_ad_share_rate_mean
  135. log_.info(f"redis_data count: {len(redis_data)}")
  136. if len(redis_data) > 0:
  137. redis_helper = RedisHelper()
  138. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  139. return video_df
  140. def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
  141. """预估视频有广告时分享率"""
  142. # 获取视频特征
  143. video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  144. for data_key, data_param in update_params.items():
  145. log_.info(f"data_key = {data_key} update start...")
  146. predict_video_share_rate_with_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
  147. data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
  148. predict_video_share_rate_no_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
  149. data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
  150. log_.info(f"data_key = {data_key} update end!")
  151. def timer_check(dt, video_key, video_params, top10_abnormal_videos):
  152. log_.info(f"video_key = {video_key}")
  153. project = config_.ad_model_data[video_key].get('project')
  154. table = config_.ad_model_data[video_key].get('table')
  155. # 查看当前更新的数据是否已准备好
  156. data_count = data_check(project=project, table=table, dt=dt)
  157. if data_count > 0:
  158. log_.info(f"ad video data count = {data_count}")
  159. # 数据准备好,进行更新
  160. update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
  161. top10_abnormal_videos=top10_abnormal_videos)
  162. log_.info(f"video_key = {video_key} ad video data update end!")
  163. msg_list = [
  164. f"env: rov-offline {config_.ENV_TEXT}",
  165. f"video_key: {video_key}",
  166. f"now_date: {dt}",
  167. f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  168. ]
  169. send_msg_to_feishu_new(
  170. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  171. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  172. title='新策略 -- 广告模型视频分享率预测数据更新完成',
  173. msg_list=msg_list
  174. )
  175. else:
  176. # 数据没准备好,1分钟后重新检查
  177. Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
  178. def main():
  179. try:
  180. now_date = datetime.datetime.today()
  181. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  182. log_.info(f"now_date: {dt}")
  183. # 获取昨天top10中的异常视频(裂变视频)
  184. top10_abnormal_videos = get_top10_abnormal_videos_return(
  185. dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
  186. )
  187. update_params = config_.AD_VIDEO_DATA_PARAMS_NEW_STRATEGY
  188. pool = multiprocessing.Pool(processes=len(update_params))
  189. for video_key, video_params in update_params.items():
  190. pool.apply_async(
  191. func=timer_check,
  192. args=(dt, video_key, video_params, top10_abnormal_videos)
  193. )
  194. pool.close()
  195. pool.join()
  196. # for video_key, video_params in update_params.items():
  197. # timer_check(dt, video_key, video_params, top10_abnormal_videos)
  198. except Exception as e:
  199. log_.error(f"新策略 -- 广告模型视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  200. msg_list = [
  201. f"env: rov-offline {config_.ENV_TEXT}",
  202. f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  203. f"exception: {e}",
  204. f"traceback: {traceback.format_exc()}",
  205. ]
  206. send_msg_to_feishu_new(
  207. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  208. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  209. title='新策略 -- 广告模型视频分享率预测数据更新失败',
  210. msg_list=msg_list
  211. )
  212. if __name__ == '__main__':
  213. # timer_check()
  214. main()