Jelajahi Sumber

add ad_video_data_update_with_new_strategy.py

liqian 1 tahun lalu
induk
melakukan
910b7a5818
2 mengubah file dengan 265 tambahan dan 0 penghapusan
  1. 235 0
      ad_video_data_update_with_new_strategy.py
  2. 30 0
      config.py

+ 235 - 0
ad_video_data_update_with_new_strategy.py

@@ -0,0 +1,235 @@
+import datetime
+import traceback
+import multiprocessing
+from threading import Timer
+from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
+from config import set_config
+from log import Log
+config_, _ = set_config()
+log_ = Log()
+redis_helper = RedisHelper()
+
+features = [
+    'apptype',
+    'videoid',
+    'ad_type',  # 0: all, 1: 自营,2: 微信
+    'sharerate',   # 被分享的概率
+    'no_ad_rate',  # 不出广告的概率
+    'no_adrate_share',  # 被分享的情况下且不出广告的概率
+    'ad_rate',  # 出广告的概率
+    'adrate_share',  # 被分享的情况下且出广告的概率
+]
+
+
+def get_top10_abnormal_videos_return(dt, filter_param):
+    """获取昨日各端top10中的异常视频(裂变视频)"""
+    abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
+    abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
+    abnormal_video_features = [
+        'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
+    ]
+    data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
+    top10_abnormal_videos = {}
+    if data_count > 0:
+        abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
+                                             features=abnormal_video_features, dt=dt)
+        abnormal_video_df['multiple'].fillna(0, inplace=True)
+        abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
+        abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
+        abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
+        abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
+        abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
+        app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
+        for app_type in app_type_list:
+            app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
+            app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
+            # print(app_type_df)
+            temp_video_id_list = []
+            for index, item in app_type_df.iterrows():
+                # print(item['rank'], item['videoid'], item['multiple'])
+                if item['multiple'] > filter_param:
+                    # print(item['videoid'], item['multiple'])
+                    abnormal_video_id_list = temp_video_id_list.copy()
+                    abnormal_video_id_list.append(int(item['videoid']))
+                    top10_abnormal_videos[app_type] = abnormal_video_id_list
+                    temp_video_id_list.append(int(item['videoid']))
+                else:
+                    temp_video_id_list.append(int(item['videoid']))
+            # print(top10_abnormal_videos)
+    log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
+    return top10_abnormal_videos
+
+
+def predict_video_share_rate_with_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
+    """预估视频有广告时被分享的概率"""
+    # 获取对应的视频特征
+    video_df = video_initial_df.copy()
+    # 获取所有广告类型对应的数据
+    video_df['ad_type'] = video_df['ad_type'].astype(int)
+    video_df = video_df[video_df['ad_type'] == 0]
+    video_df['apptype'] = video_df['apptype'].astype(int)
+    video_df = video_df[video_df['apptype'] == int(data_param)]
+    log_.info(f"video_df length: {len(video_df)}")
+    video_df['ad_rate'].fillna(0, inplace=True)
+    video_df['sharerate'].fillna(0, inplace=True)
+    video_df['adrate_share'].fillna(0, inplace=True)
+    video_df['ad_rate'] = video_df['ad_rate'].astype(float)
+    video_df['sharerate'] = video_df['sharerate'].astype(float)
+    video_df['adrate_share'] = video_df['adrate_share'].astype(float)
+
+    # 计算视频有广告时被分享率
+    video_df = video_df[video_df['adrate'] != 0]
+    video_df['video_ad_share_rate'] = \
+        video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate']
+    video_df['video_ad_share_rate'].fillna(0, inplace=True)
+    # log_.info(f"video_df: {video_df}")
+    video_df = video_df[video_df['video_ad_share_rate'] != 0]
+    log_.info(f"video_df filtered 0 length: {len(video_df)}")
+    # 结果写入redis
+    key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{data_key}:{dt}"
+    redis_data = {}
+    for index, item in video_df.iterrows():
+        redis_data[int(item['videoid'])] = item['video_ad_share_rate']
+
+    # 剔除异常视频数据
+    video_df['videoid'] = video_df['videoid'].astype(int)
+    top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
+    if top10_abnormal_video_ids is not None:
+        video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
+    group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
+    redis_data[-1] = group_ad_share_rate_mean
+    log_.info(f"redis_data count: {len(redis_data)}")
+    if len(redis_data) > 0:
+        redis_helper = RedisHelper()
+        redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
+    return video_df
+
+
+def predict_video_share_rate_no_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
+    """预估视频无广告时被分享的概率"""
+    # 获取对应的视频特征
+    video_df = video_initial_df.copy()
+    # 获取所有广告类型对应的数据
+    video_df['ad_type'] = video_df['ad_type'].astype(int)
+    video_df = video_df[video_df['ad_type'] == 0]
+    video_df['apptype'] = video_df['apptype'].astype(int)
+    video_df = video_df[video_df['apptype'] == int(data_param)]
+    log_.info(f"video_df length: {len(video_df)}")
+    video_df['no_ad_rate'].fillna(0, inplace=True)
+    video_df['sharerate'].fillna(0, inplace=True)
+    video_df['no_adrate_share'].fillna(0, inplace=True)
+    video_df['no_ad_rate'] = video_df['no_ad_rate'].astype(float)
+    video_df['sharerate'] = video_df['sharerate'].astype(float)
+    video_df['no_adrate_share'] = video_df['adrate_share'].astype(float)
+
+    # 计算视频有广告时被分享率
+    video_df = video_df[video_df['adrate'] != 0]
+    video_df['video_no_ad_share_rate'] = \
+        video_df['no_adrate_share'] * video_df['sharerate'] / video_df['no_ad_rate']
+    video_df['video_no_ad_share_rate'].fillna(0, inplace=True)
+    # log_.info(f"video_df: {video_df}")
+    video_df = video_df[video_df['video_no_ad_share_rate'] != 0]
+    log_.info(f"video_df filtered 0 length: {len(video_df)}")
+    # 结果写入redis
+    key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{data_key}:{dt}"
+    redis_data = {}
+    for index, item in video_df.iterrows():
+        redis_data[int(item['videoid'])] = item['video_no_ad_share_rate']
+
+    # 剔除异常视频数据
+    video_df['videoid'] = video_df['videoid'].astype(int)
+    top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
+    if top10_abnormal_video_ids is not None:
+        video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
+    group_ad_share_rate_mean = video_df['video_no_ad_share_rate'].mean()
+    redis_data[-1] = group_ad_share_rate_mean
+    log_.info(f"redis_data count: {len(redis_data)}")
+    if len(redis_data) > 0:
+        redis_helper = RedisHelper()
+        redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
+    return video_df
+
+
+def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
+    """预估视频有广告时分享率"""
+    # 获取视频特征
+    video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
+    for data_key, data_param in update_params.items():
+        log_.info(f"data_key = {data_key} update start...")
+        predict_video_share_rate_with_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
+                                         data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
+        predict_video_share_rate_no_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
+                                       data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
+        log_.info(f"data_key = {data_key} update end!")
+
+
+def timer_check(dt, video_key, video_params, top10_abnormal_videos):
+    log_.info(f"video_key = {video_key}")
+    project = config_.ad_model_data[video_key].get('project')
+    table = config_.ad_model_data[video_key].get('table')
+    # 查看当前更新的数据是否已准备好
+    data_count = data_check(project=project, table=table, dt=dt)
+    if data_count > 0:
+        log_.info(f"ad video data count = {data_count}")
+        # 数据准备好,进行更新
+        update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
+                           top10_abnormal_videos=top10_abnormal_videos)
+        log_.info(f"video_key = {video_key} ad video data update end!")
+        msg_list = [
+            f"env: rov-offline {config_.ENV_TEXT}",
+            f"video_key: {video_key}",
+            f"now_date: {dt}",
+            f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
+        ]
+        send_msg_to_feishu_new(
+            webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
+            title='新策略 -- 广告模型视频分享率预测数据更新完成',
+            msg_list=msg_list
+        )
+
+    else:
+        # 数据没准备好,1分钟后重新检查
+        Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
+
+
+def main():
+    try:
+        now_date = datetime.datetime.today()
+        dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+        log_.info(f"now_date: {dt}")
+        # 获取昨天top10中的异常视频(裂变视频)
+        top10_abnormal_videos = get_top10_abnormal_videos_return(
+            dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
+        )
+        update_params = config_.AD_VIDEO_DATA_PARAMS_NEW_STRATEGY
+        pool = multiprocessing.Pool(processes=len(update_params))
+        for video_key, video_params in update_params.items():
+            pool.apply_async(
+                func=timer_check,
+                args=(dt, video_key, video_params, top10_abnormal_videos)
+            )
+        pool.close()
+        pool.join()
+        # for video_key, video_params in update_params.items():
+        #     timer_check(dt, video_key, video_params, top10_abnormal_videos)
+
+    except Exception as e:
+        log_.error(f"新策略 -- 广告模型视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        msg_list = [
+            f"env: rov-offline {config_.ENV_TEXT}",
+            f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
+            f"exception: {e}",
+            f"traceback: {traceback.format_exc()}",
+        ]
+        send_msg_to_feishu_new(
+            webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
+            title='新策略 -- 广告模型视频分享率预测数据更新失败',
+            msg_list=msg_list
+        )
+
+
+if __name__ == '__main__':
+    # timer_check()
+    main()

+ 30 - 0
config.py

@@ -821,6 +821,15 @@ class BaseConfig(object):
             'project': 'loghubods',
             'table': 'video_data_with_out_admodel_alladtype'
         },  # 以是否直接跳出为目标的视频侧数据:所有广告类型数据,按照videoId统计(各视频出广告的概率,各视频被直接跳出的概率,各视频被直接跳出的情况下出广告的概率)
+
+        'videos_share_rate_new_strategy': {
+            'project': 'loghubods',
+            'table': 'video_data_with_ad_sharerate_adtype'
+        },  # 新策略使用视频侧数据:所有广告类型数据,按照videoId统计(各视频被分享的概率,各视频出广告的概率,各视频被分享的情况下出广告的概率,各视频不出广告的概率,各视频被分享的情况下不出广告的概率)
+        'users_share_rate_new_strategy': {
+            'project': 'loghubods',
+            'table': 'usergroup_sharerate_admodel'
+        },  # 新策略使用用户侧数据:按照用户分组统计(各用户组的分享率,各用户组出广告的概率,各用户组有分享的情况下出广告的概率,各用户组不出广告的概率,各用户组有分享的情况下不出广告的概率)
     }
 
     # 自动调整广告模型阈值数据
@@ -896,6 +905,21 @@ class BaseConfig(object):
         },
     }
 
+    AD_VIDEO_DATA_PARAMS_NEW_STRATEGY = {
+        # 所有广告类型视频数据
+        'videos_share_rate_new_strategy': {
+            'videos0': APP_TYPE['VLOG'],  # vlog
+            'videos4': APP_TYPE['LOVE_LIVE'],  # 票圈视频
+            'videos6': APP_TYPE['SHORT_VIDEO'],  # 票圈短视频
+            'videos5': APP_TYPE['LONG_VIDEO'],  # 内容精选
+            'videos21': APP_TYPE['PIAO_QUAN_VIDEO_PLUS'],  # 票圈视频+
+            'videos3': APP_TYPE['BLESSING_YEAR'],  # 票圈福年
+            'videos22': APP_TYPE['JOURNEY'],  # 票圈足迹
+            'videos18': APP_TYPE['LAO_HAO_KAN_VIDEO'],  # 老好看视频
+            'videos19': APP_TYPE['ZUI_JING_QI'],  # 票圈最惊奇
+        },
+    }
+
     # 广告模型异常视频数据处理参数
     AD_ABNORMAL_VIDEOS_PARAM = {
         'data1': 17/48,  # vlog
@@ -2224,6 +2248,12 @@ class BaseConfig(object):
     # 广告推荐自动调整阈值参数记录存放 redis key,完整格式:ad:threshold:param:record
     KEY_NAME_PREFIX_AD_THRESHOLD_PARAM_RECORD = 'ad:threshold:param:record'
 
+    # 新策略使用
+    # 视频有广告时的分享率预测结果存放 redis key 前缀,完整格式:video:predict:share:rate:with:ad:{video_data_key}:{date}
+    KEY_NAME_PREFIX_VIDEO_WITH_AD = 'video:predict:share:rate:with:ad:'
+    # 视频无广告时的分享率预测结果存放 redis key 前缀,完整格式:video:predict:share:rate:no:ad:{video_data_key}:{date}
+    KEY_NAME_PREFIX_VIDEO_NO_AD = 'video:predict:share:rate:no:ad:'
+
 
 class DevelopmentConfig(BaseConfig):
     """开发环境配置"""