|
@@ -76,7 +76,7 @@ class LightGBM(object):
|
|
|
features[key] = pd.to_numeric(features[key], errors="coerce")
|
|
|
for key in self.str_columns:
|
|
|
features[key] = self.label_encoder.fit_transform(features[key])
|
|
|
- # self.label_mapping[key] = dict(zip(self.label_encoder.classes_, self.label_encoder.transform(self.label_encoder.classes_)))
|
|
|
+ self.label_mapping[key] = dict(zip(self.label_encoder.classes_, self.label_encoder.transform(self.label_encoder.classes_)))
|
|
|
return features, labels, video_ids, video_titles
|
|
|
|
|
|
def best_params(self):
|
|
@@ -187,7 +187,7 @@ class LightGBM(object):
|
|
|
# 水平合并
|
|
|
df_concatenated = pd.concat([ids, titles, x, true_label_df, pred_score_df, pred_label_df], axis=1)
|
|
|
for key in self.str_columns:
|
|
|
- df_concatenated[key] = self.label_encoder.inverse_transform(df_concatenated[key])
|
|
|
+ df_concatenated[key] = self.label_mapping[key][df_concatenated[key]]
|
|
|
df_concatenated.to_excel("data/predict_data/spider_predict_result_{}.xlsx".format(dt), index=False)
|
|
|
|
|
|
def feature_importance(self):
|