|
@@ -54,6 +54,7 @@ class LightGBM(object):
|
|
|
self.model = "models/lightgbm_0401_spider.bin"
|
|
|
self.flag = flag
|
|
|
self.dt = dt
|
|
|
+ self.label_mapping = {}
|
|
|
|
|
|
def read_data(self, path, yc=None):
|
|
|
"""
|
|
@@ -75,6 +76,7 @@ class LightGBM(object):
|
|
|
features[key] = pd.to_numeric(features[key], errors="coerce")
|
|
|
for key in self.str_columns:
|
|
|
features[key] = self.label_encoder.fit_transform(features[key])
|
|
|
+ # self.label_mapping[key] = dict(zip(self.label_encoder.classes_, self.label_encoder.transform(self.label_encoder.classes_)))
|
|
|
return features, labels, video_ids, video_titles
|
|
|
|
|
|
def best_params(self):
|
|
@@ -184,6 +186,8 @@ class LightGBM(object):
|
|
|
fw.close()
|
|
|
# 水平合并
|
|
|
df_concatenated = pd.concat([ids, titles, x, true_label_df, pred_score_df, pred_label_df], axis=1)
|
|
|
+ for key in self.str_columns:
|
|
|
+ df_concatenated[key] = self.label_encoder.inverse_transform(df_concatenated[key])
|
|
|
df_concatenated.to_excel("data/predict_data/spider_predict_result_{}.xlsx".format(dt), index=False)
|
|
|
|
|
|
def feature_importance(self):
|