Przeglądaj źródła

feature_importance

罗俊辉 1 rok temu
rodzic
commit
33948f59ec
1 zmienionych plików z 5 dodań i 5 usunięć
  1. 5 5
      main.py

+ 5 - 5
main.py

@@ -110,14 +110,14 @@ class LightGBM(object):
             "objective": "binary",  # 指定二分类任务
             "metric": "binary_logloss",  # 评估指标为二分类的log损失
             "num_leaves": 31,  # 叶子节点数
-            "learning_rate": 0.01,  # 学习率
+            "learning_rate": 0.005,  # 学习率
             "bagging_fraction": 0.9,  # 建树的样本采样比例
             "feature_fraction": 0.8,  # 建树的特征选择比例
             "bagging_freq": 5,  # k 意味着每 k 次迭代执行bagging
             "num_threads": 4,  # 线程数量
         }
         # 训练模型
-        num_round = 1000
+        num_round = 2000
         print("开始训练......")
         bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
         bst.save_model(self.model)
@@ -128,7 +128,7 @@ class LightGBM(object):
         评估模型性能
         :return:
         """
-        fw = open("summary_tag_02.txt", "a+", encoding="utf-8")
+        fw = open("summary_tag_03.txt", "a+", encoding="utf-8")
         # 测试数据
         with open("produce_data/x_data_total_return_predict.json") as f1:
             x_list = json.loads(f1.read())
@@ -181,6 +181,6 @@ class LightGBM(object):
 
 if __name__ == "__main__":
     L = LightGBM()
-    # L.train_model()
+    L.train_model()
     L.evaluate_model()
-    # L.feature_importance()
+    L.feature_importance()