|
@@ -110,14 +110,14 @@ class LightGBM(object):
|
|
|
"objective": "binary", # 指定二分类任务
|
|
|
"metric": "binary_logloss", # 评估指标为二分类的log损失
|
|
|
"num_leaves": 31, # 叶子节点数
|
|
|
- "learning_rate": 0.01, # 学习率
|
|
|
+ "learning_rate": 0.005, # 学习率
|
|
|
"bagging_fraction": 0.9, # 建树的样本采样比例
|
|
|
"feature_fraction": 0.8, # 建树的特征选择比例
|
|
|
"bagging_freq": 5, # k 意味着每 k 次迭代执行bagging
|
|
|
"num_threads": 4, # 线程数量
|
|
|
}
|
|
|
# 训练模型
|
|
|
- num_round = 1000
|
|
|
+ num_round = 2000
|
|
|
print("开始训练......")
|
|
|
bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
|
|
|
bst.save_model(self.model)
|
|
@@ -128,7 +128,7 @@ class LightGBM(object):
|
|
|
评估模型性能
|
|
|
:return:
|
|
|
"""
|
|
|
- fw = open("summary_tag_02.txt", "a+", encoding="utf-8")
|
|
|
+ fw = open("summary_tag_03.txt", "a+", encoding="utf-8")
|
|
|
# 测试数据
|
|
|
with open("produce_data/x_data_total_return_predict.json") as f1:
|
|
|
x_list = json.loads(f1.read())
|
|
@@ -181,6 +181,6 @@ class LightGBM(object):
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
L = LightGBM()
|
|
|
- # L.train_model()
|
|
|
+ L.train_model()
|
|
|
L.evaluate_model()
|
|
|
- # L.feature_importance()
|
|
|
+ L.feature_importance()
|