|
@@ -145,7 +145,7 @@ class LightGBM(object):
|
|
|
X_test[key] = pd.to_numeric(X_test[key], errors="coerce")
|
|
|
bst = lgb.Booster(model_file=self.model)
|
|
|
y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
|
|
|
- y_pred_binary = [0 if i <= 0.158550 else 1 for i in list(y_pred)]
|
|
|
+ y_pred_binary = [0 if i <= 0.162294 else 1 for i in list(y_pred)]
|
|
|
# 转换为二进制输出
|
|
|
score_list = []
|
|
|
for index, item in enumerate(list(y_pred)):
|
|
@@ -181,6 +181,6 @@ class LightGBM(object):
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
L = LightGBM()
|
|
|
- L.train_model()
|
|
|
+ # L.train_model()
|
|
|
L.evaluate_model()
|
|
|
- L.feature_importance()
|
|
|
+ # L.feature_importance()
|