|
@@ -137,10 +137,14 @@ class LightGBM(object):
|
|
|
bst = lgb.Booster(model_file=self.model)
|
|
|
y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
|
|
|
# 转换为二进制输出
|
|
|
- y_pred_binary = np.where(y_pred > 0.7, 1, 0)
|
|
|
- # 评估模型
|
|
|
- accuracy = accuracy_score(Y_test, y_pred_binary)
|
|
|
- print(f'Accuracy: {accuracy}')
|
|
|
+ for index, item in enumerate(list(y_pred)):
|
|
|
+ real_label = Y_test[index]
|
|
|
+ score = item
|
|
|
+ print(real_label, "\t", score)
|
|
|
+ # y_pred_binary = np.where(y_pred > 0.5, 1, 0)
|
|
|
+ # # 评估模型
|
|
|
+ # accuracy = accuracy_score(Y_test, y_pred_binary)
|
|
|
+ # print(f'Accuracy: {accuracy}')
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|