|
@@ -121,7 +121,19 @@ class LightGBM(object):
|
|
|
评估模型性能
|
|
|
:return:
|
|
|
"""
|
|
|
- X_test, Y_test = [], []
|
|
|
+ # 测试数据
|
|
|
+ with open("whole_data/x_data_total_return_prid.json") as f1:
|
|
|
+ x_list = json.loads(f1.read())
|
|
|
+
|
|
|
+ # 测试 label
|
|
|
+ with open("whole_data/y_data_total_return_prid.json") as f2:
|
|
|
+ Y_test = json.loads(f2.read())
|
|
|
+
|
|
|
+ X_test = pd.DataFrame(x_list, columns=self.my_c)
|
|
|
+ for key in self.str_columns:
|
|
|
+ X_test[key] = self.label_encoder.fit_transform(X_test[key])
|
|
|
+ for key in self.float_columns:
|
|
|
+ X_test[key] = pd.to_numeric(X_test[key], errors='coerce')
|
|
|
bst = lgb.Booster(model_file=self.model)
|
|
|
y_pred = bst.predict(X_test, num_iteration=bst.best_iteration)
|
|
|
# 转换为二进制输出
|
|
@@ -133,4 +145,5 @@ class LightGBM(object):
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
L = LightGBM()
|
|
|
- L.train_model()
|
|
|
+ # L.train_model()
|
|
|
+ L.evaluate_model()
|