1234567891011121314151617181920212223242526272829303132333435363738394041 |
- import sys
- sys.path.append('tacotron2')
- import torch
- from layers import STFT
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- class Denoiser(torch.nn.Module):
- """ Removes model bias from audio produced with waveglow """
- def __init__(self, waveglow, filter_length=1024, n_overlap=4,
- win_length=1024, mode='zeros'):
- super(Denoiser, self).__init__()
- self.stft = STFT(filter_length=filter_length,
- hop_length=int(filter_length/n_overlap),
- win_length=win_length).to(device)
- if mode == 'zeros':
- mel_input = torch.zeros(
- (1, 80, 88),
- dtype=waveglow.upsample.weight.dtype,
- device=waveglow.upsample.weight.device)
- elif mode == 'normal':
- mel_input = torch.randn(
- (1, 80, 88),
- dtype=waveglow.upsample.weight.dtype,
- device=waveglow.upsample.weight.device)
- else:
- raise Exception("Mode {} if not supported".format(mode))
- with torch.no_grad():
- bias_audio = waveglow.infer(mel_input, sigma=0.0).float()
- bias_spec, _ = self.stft.transform(bias_audio)
- self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
- def forward(self, audio, strength=0.1):
- # audio_spec, audio_angles = self.stft.transform(audio.cuda().float())
- audio_spec, audio_angles = self.stft.transform(audio.float())
- audio_spec_denoised = audio_spec - self.bias_spec * strength
- audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
- audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles)
- return audio_denoised
|