import sys sys.path.append('tacotron2') import torch from layers import STFT device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Denoiser(torch.nn.Module): """ Removes model bias from audio produced with waveglow """ def __init__(self, waveglow, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros'): super(Denoiser, self).__init__() self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), win_length=win_length).to(device) if mode == 'zeros': mel_input = torch.zeros( (1, 80, 88), dtype=waveglow.upsample.weight.dtype, device=waveglow.upsample.weight.device) elif mode == 'normal': mel_input = torch.randn( (1, 80, 88), dtype=waveglow.upsample.weight.dtype, device=waveglow.upsample.weight.device) else: raise Exception("Mode {} if not supported".format(mode)) with torch.no_grad(): bias_audio = waveglow.infer(mel_input, sigma=0.0).float() bias_spec, _ = self.stft.transform(bias_audio) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) def forward(self, audio, strength=0.1): # audio_spec, audio_angles = self.stft.transform(audio.cuda().float()) audio_spec, audio_angles = self.stft.transform(audio.float()) audio_spec_denoised = audio_spec - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) return audio_denoised