123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365 |
- # -*- coding: utf-8 -*-
- # @ModuleName: region_rule_rank_h
- # @Author: Liqian
- # @Time: 2022/5/5 15:54
- # @Software: PyCharm
- import multiprocessing
- import os
- import sys
- import time
- import traceback
- import gevent
- import datetime
- import pandas as pd
- import math
- from functools import reduce
- from odps import ODPS
- from threading import Timer, Thread
- from my_utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
- check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos
- from my_config import set_config
- from log import Log
- from check_video_limit_distribute import update_limit_video_score
- # os.environ['NUMEXPR_MAX_THREADS'] = '16'
- config_, _ = set_config()
- log_ = Log()
- region_code = config_.REGION_CODE
- features = [
- 'apptype',
- 'code',
- 'videoid',
- 'lastonehour_preview', # 过去1小时预曝光人数 - 区分地域
- 'lastonehour_view', # 过去1小时曝光人数 - 区分地域
- 'lastonehour_play', # 过去1小时播放人数 - 区分地域
- 'lastonehour_share', # 过去1小时分享人数 - 区分地域
- 'lastonehour_return', # 过去1小时分享,过去1小时回流人数 - 区分地域
- 'lastonehour_preview_total', # 过去1小时预曝光次数 - 区分地域
- 'lastonehour_view_total', # 过去1小时曝光次数 - 区分地域
- 'lastonehour_play_total', # 过去1小时播放次数 - 区分地域
- 'lastonehour_share_total', # 过去1小时分享次数 - 区分地域
- 'platform_return',
- 'lastonehour_show', # 不区分地域
- 'lastonehour_show_region', # 地域分组
- 'lasttwohour_share', # h-2小时分享人数
- 'lasttwohour_return_now', # h-2分享,过去1小时回流人数
- 'lasttwohour_return', # h-2分享,h-2回流人数
- 'lastthreehour_share', # h-3小时分享人数
- 'lastthreehour_return_now', # h-3分享,过去1小时回流人数
- 'lastthreehour_return', # h-3分享,h-3回流人数
- 'lastonehour_return_new', # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lasttwohour_return_now_new', # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lasttwohour_return_new', # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lastthreehour_return_now_new', # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lastthreehour_return_new', # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'platform_return_new', # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- ]
- def get_region_code(region):
- """获取省份对应的code"""
- mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
- sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
- ad_code = mysql_helper.get_data(sql=sql)
- return ad_code[0][0]
- def h_data_check(project, table, now_date):
- """检查数据是否准备好"""
- odps = ODPS(
- access_id=config_.ODPS_CONFIG['ACCESSID'],
- secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
- project=project,
- endpoint=config_.ODPS_CONFIG['ENDPOINT'],
- connect_timeout=3000,
- read_timeout=500000,
- pool_maxsize=1000,
- pool_connections=1000
- )
- try:
- dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
- check_res = check_table_partition_exits(date=dt, project=project, table=table)
- if check_res:
- sql = f'select * from {project}.{table} where dt = {dt}'
- with odps.execute_sql(sql=sql).open_reader() as reader:
- data_count = reader.count
- else:
- data_count = 0
- except Exception as e:
- data_count = 0
- return data_count
- def get_rov_redis_key(now_date):
- """获取rov模型结果存放key"""
- redis_helper = RedisHelper()
- now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
- if not redis_helper.key_exists(key_name=key_name):
- pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
- key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
- return key_name
- def get_day_30day_videos(now_date, data_key, rule_key):
- """获取天级更新相对30天的视频id"""
- redis_helper = RedisHelper()
- day_30day_recall_key_prefix = config_.RECALL_KEY_NAME_PREFIX_30DAY
- now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{now_dt}"
- if not redis_helper.key_exists(key_name=day_30day_recall_key_name):
- redis_dt = datetime.datetime.strftime((now_date - datetime.timedelta(days=1)), '%Y%m%d')
- day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{redis_dt}"
- data = redis_helper.get_all_data_from_zset(key_name=day_30day_recall_key_name, with_scores=True)
- if data is None:
- return None
- video_ids = [int(video_id) for video_id, _ in data]
- return video_ids
- def get_feature_data(project, table, now_date):
- """获取特征数据"""
- dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
- # dt = '2022041310'
- records = get_data_from_odps(date=dt, project=project, table=table)
- feature_data = []
- for record in records:
- item = {}
- for feature_name in features:
- item[feature_name] = record[feature_name]
- feature_data.append(item)
- feature_df = pd.DataFrame(feature_data)
- return feature_df
- def cal_score_initial(df, param):
- """
- 计算score
- :param df: 特征数据
- :param param: 规则参数
- :return:
- """
- # score计算公式: sharerate*backrate*logback*ctr
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return/(lastonehour_share+10)
- # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
- click_score_rate = param.get('click_score_rate', None)
- back_score_rate = param.get('click_score_rate', None)
- if click_score_rate is not None:
- df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
- elif back_score_rate is not None:
- df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
- else:
- df['score'] = df['score1']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_add_return(df, param):
- # score计算公式: sharerate*(backrate*logback + backrate2*logback_now2 + backrate3*logback_now3)*ctr
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return/(lastonehour_share+10)
- # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
- # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
- # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # score = k2 * sharerate * (backrate * LOG(lastonehour_return+1) + backrate_2 * LOG(lasttwohour_return_now+1) + backrate_3 * LOG(lastthreehour_return_now+1))
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
- df['log_back2'] = (df['lasttwohour_return_now'] + 1).apply(math.log)
- df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
- df['log_back3'] = (df['lastthreehour_return_now'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['K2'] * df['share_rate'] * (
- df['back_rate'] * df['log_back'] +
- df['back_rate2'] * df['log_back2'] +
- df['back_rate3'] * df['log_back3']
- )
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_multiply_return_retention(df, param):
- # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return+1) * 前两小时回流留存
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return/(lastonehour_share+10)
- # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now + lastthreehour_return_now)/(lasttwohour_return + lastthreehour_return + 1)
- # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
- # score = k2 * sharerate * backrate * LOG(lastonehour_return+1) * return_retention
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['return_retention_initial'] = (df['lasttwohour_return_now'] + df['lastthreehour_return_now']) / \
- (df['lasttwohour_return'] + df['lastthreehour_return'] + 1)
- df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_update_backrate(df, param):
- # score计算公式: k2 * sharerate * (backrate + backrate * backrate_2 * backrate_3) * LOG(lastonehour_return+1)
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return/(lastonehour_share+10)
- # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
- # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
- # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # backrate1_3_initial = backrate * backrate_2 * backrate_3
- # backrate1_3 = 0.02 if backrate1_3_initial == 0 else backrate1_3_initial
- # score = k2 * sharerate * (backrate + backrate1_3) * LOG(lastonehour_return+1)
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
- df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['backrate1_3_initial'] = df['back_rate'] * df['back_rate2'] * df['back_rate3']
- df['backrate1_3'] = df['backrate1_3_initial'].apply(lambda x: 0.02 if x == 0 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['K2'] * df['share_rate'] * (df['back_rate'] + df['backrate1_3']) * df['log_back']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_with_new_return(df, param):
- # 回流数据使用 分享限制地域,回流不限制地域 统计数据
- # score计算公式: sharerate*backrate*logback*ctr
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return_new/(lastonehour_share+10)
- # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # score = sharerate * backrate * LOG(lastonehour_return_new+1) * K2
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
- df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_multiply_return_retention_with_new_return(df, param):
- # 回流数据使用 分享限制地域,回流不限制地域 统计数据
- # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * 前两小时回流留存
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return_new/(lastonehour_share+10)
- # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now_new + lastthreehour_return_now_new)/(lasttwohour_return_new + lastthreehour_return_new + 1)
- # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
- # score = k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * return_retention
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['return_retention_initial'] = (df['lasttwohour_return_now_new'] + df['lastthreehour_return_now_new']) / \
- (df['lasttwohour_return_new'] + df['lastthreehour_return_new'] + 1)
- df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
- df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
- df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_with_back_view0(df, param):
- # score = sharerate*backrate*log(return+1)*CTR,
- # sharerate=(lastonehour_share+1)/(lastonehour_play+1000)
- # backrate=(lastonehour_return+1)/(lastonehour_share+10)
- # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
- df = df.fillna(0)
- df['share_rate'] = (df['lastonehour_share'] + 1) / (df['lastonehour_play'] + 1000)
- df['back_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['ctr']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_with_back_view1(df, param):
- # score = back_play_rate*log(return+1)*CTR,
- # back_play_rate=(lastonehour_return+1)/(lastonehour_play+1000)
- # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
- df = df.fillna(0)
- df['back_play_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_play'] + 1000)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['back_play_rate'] * df['log_back'] * df['ctr']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_with_back_rate_exponential_weighting1(df, param):
- """
- 计算score
- :param df: 特征数据
- :param param: 规则参数
- :return:
- """
- # score计算公式: score = sharerate * backrate ^ 2 * LOG(lastonehour_return + 1) * K2
- # sharerate = lastonehour_share / (lastonehour_play + 1000)
- # backrate = lastonehour_return / (lastonehour_share + 10)
- # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['share_rate'] * df['back_rate'] ** 2 * df['log_back'] * df['K2']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_with_back_rate_exponential_weighting2(df, param):
- """
- 计算score
- :param df: 特征数据
- :param param: 规则参数
- :return:
- """
- # score计算公式: score = sharerate ^ 0.5 * backrate ^ 2 * LOG(lastonehour_return + 1) * K2 ^ 0.5
- # sharerate = lastonehour_share / (lastonehour_play + 1000)
- # backrate = lastonehour_return / (lastonehour_share + 10)
- # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['share_rate'] ** 0.5 * df['back_rate'] ** 2 * df['log_back'] * df['K2'] ** 0.5
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score_with_back_rate_by_rank_weighting(df, param):
- """
- add by sunmingze 20231123
- 计算score
- :param df: 特征数据
- :param param: 规则参数
- :return:
- """
- # score计算公式: score = 1 / sharerate(rank)^0.5 + 5 / backrate(rank)^0.5 + 10 / LOG(lastonehour_return +1)(rank) ^0.5
- # + 1 / K2(rank)^0.5
- # sharerate = lastonehour_share / (lastonehour_play + 1000)
- # backrate = lastonehour_return / (lastonehour_share + 10)
- # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- elif param.get('view_type', None) == 'video-show-region':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- # 分别的得到sharerate、backrate、K值、return人数的序关系
- df['rank_by_sharerate'] = df['share_rate'].rank(ascending=0, method='dense')
- df['rank_by_backrate'] = df['back_rate'].rank(ascending=0, method='dense')
- df['rank_by_K2'] = df['K2'].rank(ascending=0, method='dense')
- df['rank_by_logback'] = df['log_back'].rank(ascending=0, method='dense')
- # 计算基于序的加法关系函数
- df['score'] = 1/(df['rank_by_sharerate'] + 10) + 5/(df['rank_by_backrate'] + 10)
- df['score'] = df['score'] + 5/(df['rank_by_logback'] + 10) + 1/(df['rank_by_K2'] + 10)
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score(df, param):
- if param.get('return_data', None) == 'share_region_return':
- if param.get('score_func', None) == 'multiply_return_retention':
- df = cal_score_multiply_return_retention_with_new_return(df=df, param=param)
- else:
- df = cal_score_with_new_return(df=df, param=param)
- else:
- if param.get('score_func', None) == 'add_backrate*log(return+1)':
- df = cal_score_add_return(df=df, param=param)
- elif param.get('score_func', None) == 'multiply_return_retention':
- df = cal_score_multiply_return_retention(df=df, param=param)
- elif param.get('score_func', None) == 'update_backrate':
- df = cal_score_update_backrate(df=df, param=param)
- elif param.get('score_func', None) == 'back_view0':
- df = cal_score_with_back_view0(df=df, param=param)
- elif param.get('score_func', None) == 'back_view1':
- df = cal_score_with_back_view1(df=df, param=param)
- elif param.get('score_func', None) == 'back_rate_exponential_weighting1':
- df = cal_score_with_back_rate_exponential_weighting1(df=df, param=param)
- elif param.get('score_func', None) == 'back_rate_exponential_weighting2':
- df = cal_score_with_back_rate_exponential_weighting2(df=df, param=param)
- elif param.get('score_func', None) == 'back_rate_rank_weighting':
- df = cal_score_with_back_rate_by_rank_weighting(df=df, param=param)
- else:
- df = cal_score_initial(df=df, param=param)
- return df
- def add_func1(initial_df, pre_h_df):
- """当前小时级数据与前几个小时数据合并"""
- score_list = initial_df['score'].to_list()
- if len(score_list) > 0:
- min_score = min(score_list)
- else:
- min_score = 0
- pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
- df = pd.concat([initial_df, pre_h_df], ignore_index=True)
- # videoid去重,保留分值高
- df['videoid'] = df['videoid'].astype(int)
- df = df.sort_values(by=['score'], ascending=False)
- df = df.drop_duplicates(subset=['videoid'], keep="first")
- return df
- def add_func2(initial_df, pre_h_df):
- """当前小时级数据与前几个小时数据合并: 当前小时存在的视频以当前小时为准,否则以高分为主"""
- score_list = initial_df['score'].to_list()
- if len(score_list) > 0:
- min_score = min(score_list)
- else:
- min_score = 0
- initial_video_id_list = initial_df['videoid'].to_list()
- pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
- pre_h_df = pre_h_df[~pre_h_df['videoid'].isin(initial_video_id_list)]
- df = pd.concat([initial_df, pre_h_df], ignore_index=True)
- # videoid去重,保留分值高
- df['videoid'] = df['videoid'].astype(int)
- df = df.sort_values(by=['score'], ascending=False)
- df = df.drop_duplicates(subset=['videoid'], keep="first")
- return df
- def add_videos(initial_df, now_date, rule_key, region, data_key, hour_count, top, add_func):
- """
- 地域小时级数据列表中增加前6h优质视频
- :param initial_df: 地域小时级筛选结果
- :param now_date:
- :param data_key:
- :param region:
- :param rule_key:
- :param hour_count: 前几个小时, type-int
- :param top: type-int
- :return: df
- """
- redis_helper = RedisHelper()
- pre_h_data = []
- for i in range(1, hour_count+1):
- pre_date = now_date - datetime.timedelta(hours=i)
- pre_h = pre_date.hour
- pre_h_recall_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(pre_date, '%Y%m%d')}:{pre_h}"
- pre_h_top_data = redis_helper.get_data_zset_with_index(key_name=pre_h_recall_key_name,
- start=0, end=top-1,
- desc=True, with_scores=True)
- if pre_h_top_data is None:
- continue
- pre_h_data.extend(pre_h_top_data)
- pre_h_df = pd.DataFrame(data=pre_h_data, columns=['videoid', 'score'])
- if add_func == 'func2':
- df = add_func2(initial_df=initial_df, pre_h_df=pre_h_df)
- else:
- df = add_func1(initial_df=initial_df, pre_h_df=pre_h_df)
- return df
- def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank_h_flag,
- add_videos_with_pre_h=False, hour_count=0):
- """
- 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
- :param df:
- :param now_date:
- :param now_h:
- :param rule_key: 小时级数据进入条件
- :param param: 小时级数据进入条件参数
- :param region: 所属地域
- :return:
- """
- redis_helper = RedisHelper()
- # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
- return_count = param.get('return_count', 1)
- score_value = param.get('score_rule', 0)
- platform_return_rate = param.get('platform_return_rate', 0)
- h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
- & (df['platform_return_rate'] >= platform_return_rate)]
- # videoid重复时,保留分值高
- h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
- h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
- h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
- # 增加打捞的优质视频
- if add_videos_with_pre_h is True:
- add_func = param.get('add_func', None)
- h_recall_df = add_videos(initial_df=h_recall_df, now_date=now_date, rule_key=rule_key,
- region=region, data_key=data_key, hour_count=hour_count, top=10, add_func=add_func)
- h_recall_videos = h_recall_df['videoid'].to_list()
- # log_.info(f'h_recall videos count = {len(h_recall_videos)}')
- # 视频状态过滤
- if data_key in ['data7', ]:
- filtered_videos = filter_video_status_app(h_recall_videos)
- else:
- filtered_videos = filter_video_status(h_recall_videos)
- # log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
- # 屏蔽视频过滤
- shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
- shield_key_name_list = shield_config.get(region, None)
- if shield_key_name_list is not None:
- filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
- # log_.info(f"shield filtered_videos count = {len(filtered_videos)}")
- # 涉政视频过滤
- political_filter = param.get('political_filter', None)
- if political_filter is True:
- # log_.info(f"political filter videos count = {len(filtered_videos)}")
- filtered_videos = filter_political_videos(video_ids=filtered_videos)
- # log_.info(f"political filtered videos count = {len(filtered_videos)}")
- # 写入对应的redis
- h_video_ids = []
- by_30day_rule_key = param.get('30day_rule_key', None)
- if by_30day_rule_key is not None:
- # 与相对30天列表去重
- h_video_ids = get_day_30day_videos(now_date=now_date, data_key=data_key, rule_key=by_30day_rule_key)
- # log_.info(f"h_video_ids count = {len(h_video_ids)}")
- if h_video_ids is not None:
- filtered_videos = [video_id for video_id in filtered_videos if int(video_id) not in h_video_ids]
- # log_.info(f"filtered_videos count = {len(filtered_videos)}")
- h_recall_result = {}
- for video_id in filtered_videos:
- score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
- # print(score)
- h_recall_result[int(video_id)] = float(score)
- h_video_ids.append(int(video_id))
- h_recall_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- if len(h_recall_result) > 0:
- # log_.info(f"h_recall_result count = {len(h_recall_result)}")
- redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
- # 限流视频score调整
- update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
- # 清空线上过滤应用列表
- # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}")
- h_rule_key = param.get('h_rule_key', None)
- region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
- by_24h_rule_key = param.get('24h_rule_key', None)
- by_48h_rule_key = param.get('48h_rule_key', None)
- dup_remove = param.get('dup_remove', True)
- # 与其他召回视频池去重,存入对应的redis
- dup_to_redis_with_timecheck(
- h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
- region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
- by_48h_rule_key=by_48h_rule_key, region=region, data_key=data_key,
- rule_rank_h_flag=rule_rank_h_flag, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove
- )
- # log_.info(f"==============")
- def dup_data(h_video_ids, initial_key_name, dup_key_name, region, political_filter, shield_config, dup_remove):
- redis_helper = RedisHelper()
- if redis_helper.key_exists(key_name=initial_key_name):
- initial_data = redis_helper.get_all_data_from_zset(key_name=initial_key_name, with_scores=True)
- # 屏蔽视频过滤
- initial_video_ids = [int(video_id) for video_id, _ in initial_data]
- shield_key_name_list = shield_config.get(region, None)
- if shield_key_name_list is not None:
- initial_video_ids = filter_shield_video(video_ids=initial_video_ids,
- shield_key_name_list=shield_key_name_list)
- # 涉政视频过滤
- if political_filter is True:
- initial_video_ids = filter_political_videos(video_ids=initial_video_ids)
- dup_data = {}
- # 视频去重逻辑
- if dup_remove is True:
- for video_id, score in initial_data:
- if int(video_id) not in h_video_ids and int(video_id) in initial_video_ids:
- dup_data[int(video_id)] = score
- h_video_ids.append(int(video_id))
- else:
- for video_id, score in initial_data:
- if int(video_id) in initial_video_ids:
- dup_data[int(video_id)] = score
- if len(dup_data) > 0:
- redis_helper.add_data_with_zset(key_name=dup_key_name, data=dup_data, expire_time=2 * 24 * 3600)
- # 限流视频score调整
- update_limit_video_score(initial_videos=dup_data, key_name=dup_key_name)
- return h_video_ids
- def dup_to_redis(h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key, by_24h_rule_key, by_48h_rule_key,
- region, data_key, rule_rank_h_flag, political_filter, shield_config, dup_remove):
- """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
- # ##### 去重更新不区分地域小时级列表,并另存为redis中
- if h_rule_key is not None:
- h_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_key_name,
- dup_key_name=h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- # ##### 去重更新地域分组小时级24h列表,并另存为redis中
- region_24h_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- region_24h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
- dup_key_name=region_24h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- if rule_rank_h_flag == '48h':
- # ##### 去重小程序相对48h更新结果,并另存为redis中
- h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H}{data_key}:{by_48h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_48h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_48h_key_name,
- dup_key_name=h_48h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- # ##### 去重小程序相对48h 筛选后剩余数据 更新结果,并另存为redis中
- if by_48h_rule_key == 'rule1':
- other_h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H_OTHER}{data_key}:" \
- f"{by_48h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- other_h_48h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_48h_key_name,
- dup_key_name=other_h_48h_dup_key_name, region=region,
- political_filter=political_filter, shield_config=shield_config,
- dup_remove=dup_remove)
- else:
- # ##### 去重小程序相对24h更新结果,并另存为redis中
- h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_24h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
- dup_key_name=h_24h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
- # if by_24h_rule_key in ['rule3', 'rule4']:
- other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
- f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- other_h_24h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
- dup_key_name=other_h_24h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- # ##### 去重小程序模型更新结果,并另存为redis中
- # model_key_name = get_rov_redis_key(now_date=now_date)
- # model_data_dup_key_name = \
- # f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}:{data_key}:{rule_key}:" \
- # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- # h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=model_key_name,
- # dup_key_name=model_data_dup_key_name, region=region)
- def dup_to_redis_with_timecheck(h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key,
- by_24h_rule_key, by_48h_rule_key, region, data_key, rule_rank_h_flag,
- political_filter, shield_config, dup_remove):
- """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
- # 获取并判断其他数据表更新状态
- redis_helper = RedisHelper()
- while True:
- rule_24h_status = redis_helper.get_data_from_redis(key_name=f"{config_.RULE_24H_DATA_STATUS}:{datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
- region_24h_status = redis_helper.get_data_from_redis(key_name=f"{config_.REGION_24H_DATA_STATUS}:{datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
- rule_h_status = redis_helper.get_data_from_redis(key_name=f"{config_.RULE_H_DATA_STATUS}:{datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
- if rule_24h_status == '1' and region_24h_status == '1' and rule_h_status == '1':
- # log_.info("dup data start ....")
- # ##### 去重更新不区分地域小时级列表,并另存为redis中
- if h_rule_key is not None:
- h_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_key_name,
- dup_key_name=h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- # ##### 去重更新地域分组小时级24h列表,并另存为redis中
- region_24h_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- region_24h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
- dup_key_name=region_24h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- if rule_rank_h_flag == '48h':
- # ##### 去重小程序相对48h更新结果,并另存为redis中
- h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H}{data_key}:{by_48h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_48h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_48h_key_name,
- dup_key_name=h_48h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- # ##### 去重小程序相对48h 筛选后剩余数据 更新结果,并另存为redis中
- if by_48h_rule_key == 'rule1':
- other_h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H_OTHER}{data_key}:" \
- f"{by_48h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- other_h_48h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_48h_key_name,
- dup_key_name=other_h_48h_dup_key_name, region=region,
- political_filter=political_filter, shield_config=shield_config,
- dup_remove=dup_remove)
- else:
- # ##### 去重小程序相对24h更新结果,并另存为redis中
- h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_24h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
- dup_key_name=h_24h_dup_key_name, region=region, political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
- # if by_24h_rule_key in ['rule3', 'rule4']:
- other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
- f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- other_h_24h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
- f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
- dup_key_name=other_h_24h_dup_key_name, region=region,
- political_filter=political_filter,
- shield_config=shield_config, dup_remove=dup_remove)
- break
- else:
- # 数据没准备好,1分钟后重新检查
- # log_.info("dup data wait ....")
- time.sleep(60)
- # Timer(
- # 60,
- # dup_to_redis_with_timecheck,
- # args=[h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key,
- # by_24h_rule_key, by_48h_rule_key, region, data_key, rule_rank_h_flag,
- # political_filter, shield_config, dup_remove]
- # ).start()
- def merge_df(df_left, df_right):
- """
- df按照videoid, code 合并,对应特征求和
- :param df_left:
- :param df_right:
- :return:
- """
- df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
- df_merged.fillna(0, inplace=True)
- feature_list = ['videoid', 'code']
- for feature in features:
- if feature in ['apptype', 'videoid', 'code']:
- continue
- df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
- feature_list.append(feature)
- return df_merged[feature_list]
- def merge_df_with_score(df_left, df_right):
- """
- df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
- :param df_left:
- :param df_right:
- :return:
- """
- df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
- df_merged.fillna(0, inplace=True)
- feature_list = ['videoid', 'code', 'lastonehour_return', 'platform_return', 'score']
- for feature in feature_list[2:]:
- df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
- return df_merged[feature_list]
- def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
- rule_rank_h_flag, add_videos_with_pre_h, hour_count):
- log_.info(f"region = {region} start...")
- # 计算score
- region_df = df_merged[df_merged['code'] == region]
- log_.info(f'region = {region}, region_df count = {len(region_df)}')
- score_df = cal_score(df=region_df, param=rule_param)
- video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
- region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
- add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
- log_.info(f"region = {region} end!")
- def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
- rule_rank_h_flag, add_videos_with_pre_h, hour_count):
- log_.info(f"region = {region} start...")
- region_score_df = df_merged[df_merged['code'] == region]
- log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
- video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
- rule_key=rule_key, param=rule_param, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
- add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
- log_.info(f"region = {region} end!")
- def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
- log_.info(f"app_type = {app_type} start...")
- data_params_item = params.get('data_params')
- rule_params_item = params.get('rule_params')
- task_list = []
- for param in params.get('params_list'):
- data_key = param.get('data')
- data_param = data_params_item.get(data_key)
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
- df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
- df_merged = reduce(merge_df, df_list)
- rule_key = param.get('rule')
- rule_param = rule_params_item.get(rule_key)
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- task_list.extend(
- [
- gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
- now_date, now_h, rule_rank_h_flag)
- for region in region_code_list
- ]
- )
- gevent.joinall(task_list)
- log_.info(f"app_type = {app_type} end!")
- # log_.info(f"app_type = {app_type}")
- # task_list = []
- # for data_key, data_param in params['data_params'].items():
- # log_.info(f"data_key = {data_key}, data_param = {data_param}")
- # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
- # df_merged = reduce(merge_df, df_list)
- # for rule_key, rule_param in params['rule_params'].items():
- # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- # task_list.extend(
- # [
- # gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
- # now_date, now_h)
- # for region in region_code_list
- # ]
- # )
- # gevent.joinall(task_list)
- def copy_data_for_city(region, city_code, data_key, rule_key, now_date, now_h, shield_config):
- """copy 对应数据到城市对应redis,并做相应屏蔽视频过滤"""
- log_.info(f"city_code = {city_code} start ...")
- redis_helper = RedisHelper()
- key_prefix_list = [
- config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H, # 地域小时级
- config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H, # 地域相对24h
- config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H, # 不区分地域相对24h
- config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H, # 不区分地域相对24h筛选后
- config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H, # rov大列表
- ]
- for key_prefix in key_prefix_list:
- region_key = f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- city_key = f"{key_prefix}{city_code}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- if not redis_helper.key_exists(key_name=region_key):
- continue
- region_data = redis_helper.get_all_data_from_zset(key_name=region_key, with_scores=True)
- if not region_data:
- continue
- # 屏蔽视频过滤
- region_video_ids = [int(video_id) for video_id, _ in region_data]
- shield_key_name_list = shield_config.get(city_code, None)
- # shield_key_name_list = config_.SHIELD_CONFIG.get(city_code, None)
- if shield_key_name_list is not None:
- filtered_video_ids = filter_shield_video(video_ids=region_video_ids,
- shield_key_name_list=shield_key_name_list)
- else:
- filtered_video_ids = region_video_ids
- city_data = {}
- for video_id, score in region_data:
- if int(video_id) in filtered_video_ids:
- city_data[int(video_id)] = score
- if len(city_data) > 0:
- redis_helper.add_data_with_zset(key_name=city_key, data=city_data, expire_time=2 * 24 * 3600)
- log_.info(f"city_code = {city_code} end!")
- def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
- log_.info(f"param = {param} start...")
- data_key = param.get('data')
- data_param = data_params_item.get(data_key)
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
- rule_key = param.get('rule')
- rule_param = rule_params_item.get(rule_key)
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- merge_func = rule_param.get('merge_func', None)
- # 是否在地域小时级数据中增加打捞的优质视频
- add_videos_with_pre_h = rule_param.get('add_videos_with_pre_h', False)
- hour_count = rule_param.get('hour_count', 0)
- if merge_func == 2:
- score_df_list = []
- for apptype, weight in data_param.items():
- df = feature_df[feature_df['apptype'] == apptype]
- # 计算score
- score_df = cal_score(df=df, param=rule_param)
- score_df['score'] = score_df['score'] * weight
- score_df_list.append(score_df)
- # 分数合并
- df_merged = reduce(merge_df_with_score, score_df_list)
- # 更新平台回流比
- df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
- task_list = [
- gevent.spawn(process_with_region2,
- region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
- add_videos_with_pre_h, hour_count)
- for region in region_code_list
- ]
- else:
- df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
- df_merged = reduce(merge_df, df_list)
- task_list = [
- gevent.spawn(process_with_region,
- region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
- add_videos_with_pre_h, hour_count)
- for region in region_code_list
- ]
- gevent.joinall(task_list)
- # 特殊城市视频数据准备
- # 屏蔽视频过滤
- shield_config = rule_param.get('shield_config', config_.SHIELD_CONFIG)
- for region, city_list in config_.REGION_CITY_MAPPING.items():
- t = [
- gevent.spawn(
- copy_data_for_city,
- region, city_code, data_key, rule_key, now_date, now_h, shield_config
- )
- for city_code in city_list
- ]
- gevent.joinall(t)
- log_.info(f"param = {param} end!")
- def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
- # 获取特征数据
- feature_df = get_feature_data(project=project, table=table, now_date=now_date)
- feature_df['apptype'] = feature_df['apptype'].astype(int)
- data_params_item = rule_params.get('data_params')
- rule_params_item = rule_params.get('rule_params')
- params_list = rule_params.get('params_list')
- pool = multiprocessing.Pool(processes=len(params_list))
- for param in params_list:
- pool.apply_async(
- func=process_with_param,
- args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag)
- )
- pool.close()
- pool.join()
- # pool = multiprocessing.Pool(processes=len(config_.APP_TYPE))
- # for app_type, params in rule_params.items():
- # pool.apply_async(func=process_with_app_type,
- # args=(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag))
- # pool.close()
- # pool.join()
- """
- for app_type, params in rule_params.items():
- log_.info(f"app_type = {app_type} start...")
- data_params_item = params.get('data_params')
- rule_params_item = params.get('rule_params')
- for param in params.get('params_list'):
- log_.info(f"param = {param} start...")
- data_key = param.get('data')
- data_param = data_params_item.get(data_key)
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
- df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
- df_merged = reduce(merge_df, df_list)
- rule_key = param.get('rule')
- rule_param = rule_params_item.get(rule_key)
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- task_list = []
- for region in region_code_list:
- t = Thread(target=process_with_region,
- args=(region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
- )
- t.start()
- task_list.append(t)
- for t in task_list:
- t.join()
- log_.info(f"param = {param} end!")
- log_.info(f"app_type = {app_type} end!")
- """
- # for app_type, params in rule_params.items():
- # log_.info(f"app_type = {app_type}")
- # for data_key, data_param in params['data_params'].items():
- # log_.info(f"data_key = {data_key}, data_param = {data_param}")
- # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
- # df_merged = reduce(merge_df, df_list)
- # for rule_key, rule_param in params['rule_params'].items():
- # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- # task_list = [
- # gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
- # for region in region_code_list
- # ]
- # gevent.joinall(task_list)
- # rank
- # for key, value in rule_params.items():
- # log_.info(f"rule = {key}, param = {value}")
- # for region in region_code_list:
- # log_.info(f"region = {region}")
- # # 计算score
- # region_df = feature_df[feature_df['code'] == region]
- # log_.info(f'region_df count = {len(region_df)}')
- # score_df = cal_score(df=region_df, param=value)
- # video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
- # # to-csv
- # score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
- # score_df.to_csv(f'./data/{score_filename}')
- # # to-logs
- # log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
- # "region_code": region,
- # "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
- # "rule_key": key,
- # # "score_df": score_df[['videoid', 'score']]
- # }
- # )
- def h_bottom_process(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h,
- now_date, now_h, rule_rank_h_flag):
- redis_helper = RedisHelper()
- data_key = param.get('data')
- rule_key = param.get('rule')
- rule_param = rule_params_item.get(rule_key)
- log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
- h_rule_key = rule_param.get('h_rule_key', None)
- region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
- by_24h_rule_key = rule_param.get('24h_rule_key', None)
- by_48h_rule_key = rule_param.get('48h_rule_key', None)
- # 涉政视频过滤
- political_filter = param.get('political_filter', None)
- # 屏蔽视频过滤
- shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
- dup_remove = param.get('dup_remove', True)
- for region in region_code_list:
- log_.info(f"region = {region}")
- key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
- initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- if initial_data is None:
- initial_data = []
- final_data = dict()
- h_video_ids = []
- for video_id, score in initial_data:
- final_data[video_id] = score
- h_video_ids.append(int(video_id))
- # 存入对应的redis
- final_key_name = \
- f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- if len(final_data) > 0:
- redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
- # 与其他召回视频池去重,存入对应的redis
- dup_to_redis_with_timecheck(
- h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
- region_24h_rule_key=region_24h_rule_key, region=region,
- data_key=data_key, by_24h_rule_key=by_24h_rule_key,
- by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
- political_filter=political_filter, shield_config=shield_config, dup_remove=dup_remove
- )
- # 特殊城市视频数据准备
- for region, city_list in config_.REGION_CITY_MAPPING.items():
- t = [
- gevent.spawn(
- copy_data_for_city,
- region, city_code, data_key, rule_key, now_date, now_h, shield_config
- )
- for city_code in city_list
- ]
- gevent.joinall(t)
- def h_rank_bottom(now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
- """未按时更新数据,用上一小时结果作为当前小时的数据"""
- # 获取rov模型结果
- # redis_helper = RedisHelper()
- if now_h == 0:
- redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
- redis_h = 23
- else:
- redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- redis_h = now_h - 1
- # 以上一小时的地域分组数据作为当前小时的数据
- key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
- rule_params_item = rule_params.get('rule_params')
- params_list = rule_params.get('params_list')
- pool = multiprocessing.Pool(processes=len(params_list))
- for param in params_list:
- pool.apply_async(
- func=h_bottom_process,
- args=(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h, now_date, now_h, rule_rank_h_flag)
- )
- pool.close()
- pool.join()
- # for param in rule_params.get('params_list'):
- # data_key = param.get('data')
- # rule_key = param.get('rule')
- # rule_param = rule_params_item.get(rule_key)
- # log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
- # region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
- # by_24h_rule_key = rule_param.get('24h_rule_key', None)
- # by_48h_rule_key = rule_param.get('48h_rule_key', None)
- # # 涉政视频过滤
- # political_filter = param.get('political_filter', None)
- # # 屏蔽视频过滤
- # shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
- # for region in region_code_list:
- # log_.info(f"region = {region}")
- # key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
- # initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- # if initial_data is None:
- # initial_data = []
- # final_data = dict()
- # h_video_ids = []
- # for video_id, score in initial_data:
- # final_data[video_id] = score
- # h_video_ids.append(int(video_id))
- # # 存入对应的redis
- # final_key_name = \
- # f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- # if len(final_data) > 0:
- # redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
- # # 与其他召回视频池去重,存入对应的redis
- # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key,
- # region_24h_rule_key=region_24h_rule_key, region=region,
- # data_key=data_key, by_24h_rule_key=by_24h_rule_key,
- # by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
- # political_filter=political_filter, shield_config=shield_config)
- # # 特殊城市视频数据准备
- # for region, city_list in config_.REGION_CITY_MAPPING.items():
- # t = [
- # gevent.spawn(
- # copy_data_for_city,
- # region, city_code, data_key, rule_key, now_date, now_h, shield_config
- # )
- # for city_code in city_list
- # ]
- # gevent.joinall(t)
- def h_timer_check():
- try:
- rule_rank_h_flag = sys.argv[1]
- # rule_rank_h_flag = '24h'
- if rule_rank_h_flag == '48h':
- rule_params = config_.RULE_PARAMS_REGION_APP_TYPE_48H
- else:
- rule_params = config_.RULE_PARAMS_REGION_APP_TYPE
- project = config_.PROJECT_REGION_APP_TYPE
- table = config_.TABLE_REGION_APP_TYPE
- region_code_list = [code for region, code in region_code.items()]
- now_date = datetime.datetime.today()
- log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}, rule_rank_h_flag: {rule_rank_h_flag}")
- now_h = datetime.datetime.now().hour
- now_min = datetime.datetime.now().minute
- if now_h == 0:
- h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
- rule_rank_h_flag=rule_rank_h_flag)
- log_.info(f"region_h_data end!")
- return
- # 查看当前小时更新的数据是否已准备好
- h_data_count = h_data_check(project=project, table=table, now_date=now_date)
- if h_data_count > 0:
- log_.info(f'region_h_data_count = {h_data_count}')
- # 数据准备好,进行更新
- rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
- project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
- log_.info(f"region_h_data end!")
- elif now_min > 40:
- log_.info('h_recall data is None, use bottom data!')
- h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
- rule_rank_h_flag=rule_rank_h_flag)
- log_.info(f"region_h_data end!")
- else:
- # 数据没准备好,1分钟后重新检查
- Timer(60, h_timer_check).start()
- # send_msg_to_feishu(
- # webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- # key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- # msg_text=f"rov-offline{config_.ENV_TEXT} - 推荐视频数据更新完成\n"
- # f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d')}\n"
- # f"now_h: {now_h}\n"
- # f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}"
- # )
- except Exception as e:
- log_.error(f"地域分组小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- send_msg_to_feishu(
- webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组小时级数据更新失败\n"
- f"exception: {e}\n"
- f"traceback: {traceback.format_exc()}"
- )
- if __name__ == '__main__':
- log_.info(f"region_h_data start...")
- h_timer_check()
|