region_rule_rank_h.py 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import multiprocessing
  7. import os
  8. import sys
  9. import time
  10. import traceback
  11. import gevent
  12. import datetime
  13. import pandas as pd
  14. import math
  15. from functools import reduce
  16. from odps import ODPS
  17. from threading import Timer, Thread
  18. from my_utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
  19. check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos
  20. from my_config import set_config
  21. from log import Log
  22. from check_video_limit_distribute import update_limit_video_score
  23. # os.environ['NUMEXPR_MAX_THREADS'] = '16'
  24. config_, _ = set_config()
  25. log_ = Log()
  26. region_code = config_.REGION_CODE
  27. features = [
  28. 'apptype',
  29. 'code',
  30. 'videoid',
  31. 'lastonehour_preview', # 过去1小时预曝光人数 - 区分地域
  32. 'lastonehour_view', # 过去1小时曝光人数 - 区分地域
  33. 'lastonehour_play', # 过去1小时播放人数 - 区分地域
  34. 'lastonehour_share', # 过去1小时分享人数 - 区分地域
  35. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数 - 区分地域
  36. 'lastonehour_preview_total', # 过去1小时预曝光次数 - 区分地域
  37. 'lastonehour_view_total', # 过去1小时曝光次数 - 区分地域
  38. 'lastonehour_play_total', # 过去1小时播放次数 - 区分地域
  39. 'lastonehour_share_total', # 过去1小时分享次数 - 区分地域
  40. 'platform_return',
  41. 'lastonehour_show', # 不区分地域
  42. 'lastonehour_show_region', # 地域分组
  43. 'lasttwohour_share', # h-2小时分享人数
  44. 'lasttwohour_return_now', # h-2分享,过去1小时回流人数
  45. 'lasttwohour_return', # h-2分享,h-2回流人数
  46. 'lastthreehour_share', # h-3小时分享人数
  47. 'lastthreehour_return_now', # h-3分享,过去1小时回流人数
  48. 'lastthreehour_return', # h-3分享,h-3回流人数
  49. 'lastonehour_return_new', # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  50. 'lasttwohour_return_now_new', # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  51. 'lasttwohour_return_new', # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  52. 'lastthreehour_return_now_new', # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  53. 'lastthreehour_return_new', # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  54. 'platform_return_new', # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  55. ]
  56. def get_region_code(region):
  57. """获取省份对应的code"""
  58. mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
  59. sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
  60. ad_code = mysql_helper.get_data(sql=sql)
  61. return ad_code[0][0]
  62. def h_data_check(project, table, now_date):
  63. """检查数据是否准备好"""
  64. odps = ODPS(
  65. access_id=config_.ODPS_CONFIG['ACCESSID'],
  66. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  67. project=project,
  68. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  69. connect_timeout=3000,
  70. read_timeout=500000,
  71. pool_maxsize=1000,
  72. pool_connections=1000
  73. )
  74. try:
  75. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  76. check_res = check_table_partition_exits(date=dt, project=project, table=table)
  77. if check_res:
  78. sql = f'select * from {project}.{table} where dt = {dt}'
  79. with odps.execute_sql(sql=sql).open_reader() as reader:
  80. data_count = reader.count
  81. else:
  82. data_count = 0
  83. except Exception as e:
  84. data_count = 0
  85. return data_count
  86. def get_rov_redis_key(now_date):
  87. """获取rov模型结果存放key"""
  88. redis_helper = RedisHelper()
  89. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  90. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  91. if not redis_helper.key_exists(key_name=key_name):
  92. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  93. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  94. return key_name
  95. def get_day_30day_videos(now_date, data_key, rule_key):
  96. """获取天级更新相对30天的视频id"""
  97. redis_helper = RedisHelper()
  98. day_30day_recall_key_prefix = config_.RECALL_KEY_NAME_PREFIX_30DAY
  99. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  100. day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{now_dt}"
  101. if not redis_helper.key_exists(key_name=day_30day_recall_key_name):
  102. redis_dt = datetime.datetime.strftime((now_date - datetime.timedelta(days=1)), '%Y%m%d')
  103. day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{redis_dt}"
  104. data = redis_helper.get_all_data_from_zset(key_name=day_30day_recall_key_name, with_scores=True)
  105. if data is None:
  106. return None
  107. video_ids = [int(video_id) for video_id, _ in data]
  108. return video_ids
  109. def get_feature_data(project, table, now_date):
  110. """获取特征数据"""
  111. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  112. # dt = '2022041310'
  113. records = get_data_from_odps(date=dt, project=project, table=table)
  114. feature_data = []
  115. for record in records:
  116. item = {}
  117. for feature_name in features:
  118. item[feature_name] = record[feature_name]
  119. feature_data.append(item)
  120. feature_df = pd.DataFrame(feature_data)
  121. return feature_df
  122. def cal_score_initial(df, param):
  123. """
  124. 计算score
  125. :param df: 特征数据
  126. :param param: 规则参数
  127. :return:
  128. """
  129. # score计算公式: sharerate*backrate*logback*ctr
  130. # sharerate = lastonehour_share/(lastonehour_play+1000)
  131. # backrate = lastonehour_return/(lastonehour_share+10)
  132. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  133. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  134. df = df.fillna(0)
  135. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  136. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  137. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  138. if param.get('view_type', None) == 'video-show':
  139. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  140. elif param.get('view_type', None) == 'video-show-region':
  141. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  142. else:
  143. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  144. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  145. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  146. df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  147. click_score_rate = param.get('click_score_rate', None)
  148. back_score_rate = param.get('click_score_rate', None)
  149. if click_score_rate is not None:
  150. df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
  151. elif back_score_rate is not None:
  152. df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
  153. else:
  154. df['score'] = df['score1']
  155. df = df.sort_values(by=['score'], ascending=False)
  156. return df
  157. def cal_score_add_return(df, param):
  158. # score计算公式: sharerate*(backrate*logback + backrate2*logback_now2 + backrate3*logback_now3)*ctr
  159. # sharerate = lastonehour_share/(lastonehour_play+1000)
  160. # backrate = lastonehour_return/(lastonehour_share+10)
  161. # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
  162. # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
  163. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  164. # score = k2 * sharerate * (backrate * LOG(lastonehour_return+1) + backrate_2 * LOG(lasttwohour_return_now+1) + backrate_3 * LOG(lastthreehour_return_now+1))
  165. df = df.fillna(0)
  166. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  167. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  168. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  169. df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
  170. df['log_back2'] = (df['lasttwohour_return_now'] + 1).apply(math.log)
  171. df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
  172. df['log_back3'] = (df['lastthreehour_return_now'] + 1).apply(math.log)
  173. if param.get('view_type', None) == 'video-show':
  174. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  175. elif param.get('view_type', None) == 'video-show-region':
  176. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  177. else:
  178. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  179. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  180. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  181. df['score'] = df['K2'] * df['share_rate'] * (
  182. df['back_rate'] * df['log_back'] +
  183. df['back_rate2'] * df['log_back2'] +
  184. df['back_rate3'] * df['log_back3']
  185. )
  186. df = df.sort_values(by=['score'], ascending=False)
  187. return df
  188. def cal_score_multiply_return_retention(df, param):
  189. # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return+1) * 前两小时回流留存
  190. # sharerate = lastonehour_share/(lastonehour_play+1000)
  191. # backrate = lastonehour_return/(lastonehour_share+10)
  192. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  193. # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now + lastthreehour_return_now)/(lasttwohour_return + lastthreehour_return + 1)
  194. # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
  195. # score = k2 * sharerate * backrate * LOG(lastonehour_return+1) * return_retention
  196. df = df.fillna(0)
  197. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  198. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  199. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  200. if param.get('view_type', None) == 'video-show':
  201. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  202. elif param.get('view_type', None) == 'video-show-region':
  203. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  204. else:
  205. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  206. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  207. df['return_retention_initial'] = (df['lasttwohour_return_now'] + df['lastthreehour_return_now']) / \
  208. (df['lasttwohour_return'] + df['lastthreehour_return'] + 1)
  209. df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
  210. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  211. df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
  212. df = df.sort_values(by=['score'], ascending=False)
  213. return df
  214. def cal_score_update_backrate(df, param):
  215. # score计算公式: k2 * sharerate * (backrate + backrate * backrate_2 * backrate_3) * LOG(lastonehour_return+1)
  216. # sharerate = lastonehour_share/(lastonehour_play+1000)
  217. # backrate = lastonehour_return/(lastonehour_share+10)
  218. # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
  219. # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
  220. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  221. # backrate1_3_initial = backrate * backrate_2 * backrate_3
  222. # backrate1_3 = 0.02 if backrate1_3_initial == 0 else backrate1_3_initial
  223. # score = k2 * sharerate * (backrate + backrate1_3) * LOG(lastonehour_return+1)
  224. df = df.fillna(0)
  225. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  226. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  227. df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
  228. df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
  229. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  230. if param.get('view_type', None) == 'video-show':
  231. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  232. elif param.get('view_type', None) == 'video-show-region':
  233. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  234. else:
  235. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  236. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  237. df['backrate1_3_initial'] = df['back_rate'] * df['back_rate2'] * df['back_rate3']
  238. df['backrate1_3'] = df['backrate1_3_initial'].apply(lambda x: 0.02 if x == 0 else x)
  239. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  240. df['score'] = df['K2'] * df['share_rate'] * (df['back_rate'] + df['backrate1_3']) * df['log_back']
  241. df = df.sort_values(by=['score'], ascending=False)
  242. return df
  243. def cal_score_with_new_return(df, param):
  244. # 回流数据使用 分享限制地域,回流不限制地域 统计数据
  245. # score计算公式: sharerate*backrate*logback*ctr
  246. # sharerate = lastonehour_share/(lastonehour_play+1000)
  247. # backrate = lastonehour_return_new/(lastonehour_share+10)
  248. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  249. # score = sharerate * backrate * LOG(lastonehour_return_new+1) * K2
  250. df = df.fillna(0)
  251. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  252. df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
  253. df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
  254. if param.get('view_type', None) == 'video-show':
  255. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  256. elif param.get('view_type', None) == 'video-show-region':
  257. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  258. else:
  259. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  260. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  261. df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
  262. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  263. df = df.sort_values(by=['score'], ascending=False)
  264. return df
  265. def cal_score_multiply_return_retention_with_new_return(df, param):
  266. # 回流数据使用 分享限制地域,回流不限制地域 统计数据
  267. # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * 前两小时回流留存
  268. # sharerate = lastonehour_share/(lastonehour_play+1000)
  269. # backrate = lastonehour_return_new/(lastonehour_share+10)
  270. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  271. # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now_new + lastthreehour_return_now_new)/(lasttwohour_return_new + lastthreehour_return_new + 1)
  272. # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
  273. # score = k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * return_retention
  274. df = df.fillna(0)
  275. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  276. df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
  277. df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
  278. if param.get('view_type', None) == 'video-show':
  279. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  280. elif param.get('view_type', None) == 'video-show-region':
  281. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  282. else:
  283. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  284. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  285. df['return_retention_initial'] = (df['lasttwohour_return_now_new'] + df['lastthreehour_return_now_new']) / \
  286. (df['lasttwohour_return_new'] + df['lastthreehour_return_new'] + 1)
  287. df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
  288. df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
  289. df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
  290. df = df.sort_values(by=['score'], ascending=False)
  291. return df
  292. def cal_score_with_back_view0(df, param):
  293. # score = sharerate*backrate*log(return+1)*CTR,
  294. # sharerate=(lastonehour_share+1)/(lastonehour_play+1000)
  295. # backrate=(lastonehour_return+1)/(lastonehour_share+10)
  296. # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
  297. df = df.fillna(0)
  298. df['share_rate'] = (df['lastonehour_share'] + 1) / (df['lastonehour_play'] + 1000)
  299. df['back_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_share'] + 10)
  300. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  301. df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
  302. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  303. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['ctr']
  304. df = df.sort_values(by=['score'], ascending=False)
  305. return df
  306. def cal_score_with_back_view1(df, param):
  307. # score = back_play_rate*log(return+1)*CTR,
  308. # back_play_rate=(lastonehour_return+1)/(lastonehour_play+1000)
  309. # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
  310. df = df.fillna(0)
  311. df['back_play_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_play'] + 1000)
  312. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  313. df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
  314. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  315. df['score'] = df['back_play_rate'] * df['log_back'] * df['ctr']
  316. df = df.sort_values(by=['score'], ascending=False)
  317. return df
  318. def cal_score_with_back_rate_exponential_weighting1(df, param):
  319. """
  320. 计算score
  321. :param df: 特征数据
  322. :param param: 规则参数
  323. :return:
  324. """
  325. # score计算公式: score = sharerate * backrate ^ 2 * LOG(lastonehour_return + 1) * K2
  326. # sharerate = lastonehour_share / (lastonehour_play + 1000)
  327. # backrate = lastonehour_return / (lastonehour_share + 10)
  328. # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  329. df = df.fillna(0)
  330. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  331. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  332. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  333. if param.get('view_type', None) == 'video-show':
  334. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  335. elif param.get('view_type', None) == 'video-show-region':
  336. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  337. else:
  338. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  339. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  340. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  341. df['score'] = df['share_rate'] * df['back_rate'] ** 2 * df['log_back'] * df['K2']
  342. df = df.sort_values(by=['score'], ascending=False)
  343. return df
  344. def cal_score_with_back_rate_exponential_weighting2(df, param):
  345. """
  346. 计算score
  347. :param df: 特征数据
  348. :param param: 规则参数
  349. :return:
  350. """
  351. # score计算公式: score = sharerate ^ 0.5 * backrate ^ 2 * LOG(lastonehour_return + 1) * K2 ^ 0.5
  352. # sharerate = lastonehour_share / (lastonehour_play + 1000)
  353. # backrate = lastonehour_return / (lastonehour_share + 10)
  354. # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  355. df = df.fillna(0)
  356. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  357. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  358. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  359. if param.get('view_type', None) == 'video-show':
  360. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  361. elif param.get('view_type', None) == 'video-show-region':
  362. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  363. else:
  364. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  365. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  366. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  367. df['score'] = df['share_rate'] ** 0.5 * df['back_rate'] ** 2 * df['log_back'] * df['K2'] ** 0.5
  368. df = df.sort_values(by=['score'], ascending=False)
  369. return df
  370. def cal_score_with_back_rate_by_rank_weighting(df, param):
  371. """
  372. add by sunmingze 20231123
  373. 计算score
  374. :param df: 特征数据
  375. :param param: 规则参数
  376. :return:
  377. """
  378. # score计算公式: score = 1 / sharerate(rank)^0.5 + 5 / backrate(rank)^0.5 + 10 / LOG(lastonehour_return +1)(rank) ^0.5
  379. # + 1 / K2(rank)^0.5
  380. # sharerate = lastonehour_share / (lastonehour_play + 1000)
  381. # backrate = lastonehour_return / (lastonehour_share + 10)
  382. # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  383. df = df.fillna(0)
  384. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  385. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  386. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  387. if param.get('view_type', None) == 'video-show':
  388. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  389. elif param.get('view_type', None) == 'video-show-region':
  390. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  391. else:
  392. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  393. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  394. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  395. # 分别的得到sharerate、backrate、K值、return人数的序关系
  396. df['rank_by_sharerate'] = df['share_rate'].rank(ascending=0, method='dense')
  397. df['rank_by_backrate'] = df['back_rate'].rank(ascending=0, method='dense')
  398. df['rank_by_K2'] = df['K2'].rank(ascending=0, method='dense')
  399. df['rank_by_logback'] = df['log_back'].rank(ascending=0, method='dense')
  400. # 计算基于序的加法关系函数
  401. df['score'] = 1/(df['rank_by_sharerate'] + 10) + 5/(df['rank_by_backrate'] + 10)
  402. df['score'] = df['score'] + 5/(df['rank_by_logback'] + 10) + 1/(df['rank_by_K2'] + 10)
  403. df = df.sort_values(by=['score'], ascending=False)
  404. return df
  405. def cal_score(df, param):
  406. if param.get('return_data', None) == 'share_region_return':
  407. if param.get('score_func', None) == 'multiply_return_retention':
  408. df = cal_score_multiply_return_retention_with_new_return(df=df, param=param)
  409. else:
  410. df = cal_score_with_new_return(df=df, param=param)
  411. else:
  412. if param.get('score_func', None) == 'add_backrate*log(return+1)':
  413. df = cal_score_add_return(df=df, param=param)
  414. elif param.get('score_func', None) == 'multiply_return_retention':
  415. df = cal_score_multiply_return_retention(df=df, param=param)
  416. elif param.get('score_func', None) == 'update_backrate':
  417. df = cal_score_update_backrate(df=df, param=param)
  418. elif param.get('score_func', None) == 'back_view0':
  419. df = cal_score_with_back_view0(df=df, param=param)
  420. elif param.get('score_func', None) == 'back_view1':
  421. df = cal_score_with_back_view1(df=df, param=param)
  422. elif param.get('score_func', None) == 'back_rate_exponential_weighting1':
  423. df = cal_score_with_back_rate_exponential_weighting1(df=df, param=param)
  424. elif param.get('score_func', None) == 'back_rate_exponential_weighting2':
  425. df = cal_score_with_back_rate_exponential_weighting2(df=df, param=param)
  426. elif param.get('score_func', None) == 'back_rate_rank_weighting':
  427. df = cal_score_with_back_rate_by_rank_weighting(df=df, param=param)
  428. else:
  429. df = cal_score_initial(df=df, param=param)
  430. return df
  431. def add_func1(initial_df, pre_h_df):
  432. """当前小时级数据与前几个小时数据合并"""
  433. score_list = initial_df['score'].to_list()
  434. if len(score_list) > 0:
  435. min_score = min(score_list)
  436. else:
  437. min_score = 0
  438. pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
  439. df = pd.concat([initial_df, pre_h_df], ignore_index=True)
  440. # videoid去重,保留分值高
  441. df['videoid'] = df['videoid'].astype(int)
  442. df = df.sort_values(by=['score'], ascending=False)
  443. df = df.drop_duplicates(subset=['videoid'], keep="first")
  444. return df
  445. def add_func2(initial_df, pre_h_df):
  446. """当前小时级数据与前几个小时数据合并: 当前小时存在的视频以当前小时为准,否则以高分为主"""
  447. score_list = initial_df['score'].to_list()
  448. if len(score_list) > 0:
  449. min_score = min(score_list)
  450. else:
  451. min_score = 0
  452. initial_video_id_list = initial_df['videoid'].to_list()
  453. pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
  454. pre_h_df = pre_h_df[~pre_h_df['videoid'].isin(initial_video_id_list)]
  455. df = pd.concat([initial_df, pre_h_df], ignore_index=True)
  456. # videoid去重,保留分值高
  457. df['videoid'] = df['videoid'].astype(int)
  458. df = df.sort_values(by=['score'], ascending=False)
  459. df = df.drop_duplicates(subset=['videoid'], keep="first")
  460. return df
  461. def add_videos(initial_df, now_date, rule_key, region, data_key, hour_count, top, add_func):
  462. """
  463. 地域小时级数据列表中增加前6h优质视频
  464. :param initial_df: 地域小时级筛选结果
  465. :param now_date:
  466. :param data_key:
  467. :param region:
  468. :param rule_key:
  469. :param hour_count: 前几个小时, type-int
  470. :param top: type-int
  471. :return: df
  472. """
  473. redis_helper = RedisHelper()
  474. pre_h_data = []
  475. for i in range(1, hour_count+1):
  476. pre_date = now_date - datetime.timedelta(hours=i)
  477. pre_h = pre_date.hour
  478. pre_h_recall_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
  479. f"{datetime.datetime.strftime(pre_date, '%Y%m%d')}:{pre_h}"
  480. pre_h_top_data = redis_helper.get_data_zset_with_index(key_name=pre_h_recall_key_name,
  481. start=0, end=top-1,
  482. desc=True, with_scores=True)
  483. if pre_h_top_data is None:
  484. continue
  485. pre_h_data.extend(pre_h_top_data)
  486. pre_h_df = pd.DataFrame(data=pre_h_data, columns=['videoid', 'score'])
  487. if add_func == 'func2':
  488. df = add_func2(initial_df=initial_df, pre_h_df=pre_h_df)
  489. else:
  490. df = add_func1(initial_df=initial_df, pre_h_df=pre_h_df)
  491. return df
  492. def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank_h_flag,
  493. add_videos_with_pre_h=False, hour_count=0):
  494. """
  495. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  496. :param df:
  497. :param now_date:
  498. :param now_h:
  499. :param rule_key: 小时级数据进入条件
  500. :param param: 小时级数据进入条件参数
  501. :param region: 所属地域
  502. :return:
  503. """
  504. redis_helper = RedisHelper()
  505. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  506. return_count = param.get('return_count', 1)
  507. score_value = param.get('score_rule', 0)
  508. platform_return_rate = param.get('platform_return_rate', 0)
  509. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
  510. & (df['platform_return_rate'] >= platform_return_rate)]
  511. # videoid重复时,保留分值高
  512. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  513. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  514. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  515. # 增加打捞的优质视频
  516. if add_videos_with_pre_h is True:
  517. add_func = param.get('add_func', None)
  518. h_recall_df = add_videos(initial_df=h_recall_df, now_date=now_date, rule_key=rule_key,
  519. region=region, data_key=data_key, hour_count=hour_count, top=10, add_func=add_func)
  520. h_recall_videos = h_recall_df['videoid'].to_list()
  521. # log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  522. # 视频状态过滤
  523. if data_key in ['data7', ]:
  524. filtered_videos = filter_video_status_app(h_recall_videos)
  525. else:
  526. filtered_videos = filter_video_status(h_recall_videos)
  527. # log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  528. # 屏蔽视频过滤
  529. shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
  530. shield_key_name_list = shield_config.get(region, None)
  531. if shield_key_name_list is not None:
  532. filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
  533. # log_.info(f"shield filtered_videos count = {len(filtered_videos)}")
  534. # 涉政视频过滤
  535. political_filter = param.get('political_filter', None)
  536. if political_filter is True:
  537. # log_.info(f"political filter videos count = {len(filtered_videos)}")
  538. filtered_videos = filter_political_videos(video_ids=filtered_videos)
  539. # log_.info(f"political filtered videos count = {len(filtered_videos)}")
  540. # 写入对应的redis
  541. h_video_ids = []
  542. by_30day_rule_key = param.get('30day_rule_key', None)
  543. if by_30day_rule_key is not None:
  544. # 与相对30天列表去重
  545. h_video_ids = get_day_30day_videos(now_date=now_date, data_key=data_key, rule_key=by_30day_rule_key)
  546. # log_.info(f"h_video_ids count = {len(h_video_ids)}")
  547. if h_video_ids is not None:
  548. filtered_videos = [video_id for video_id in filtered_videos if int(video_id) not in h_video_ids]
  549. # log_.info(f"filtered_videos count = {len(filtered_videos)}")
  550. h_recall_result = {}
  551. for video_id in filtered_videos:
  552. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  553. # print(score)
  554. h_recall_result[int(video_id)] = float(score)
  555. h_video_ids.append(int(video_id))
  556. h_recall_key_name = \
  557. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
  558. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  559. if len(h_recall_result) > 0:
  560. # log_.info(f"h_recall_result count = {len(h_recall_result)}")
  561. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
  562. # 限流视频score调整
  563. update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
  564. # 清空线上过滤应用列表
  565. # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}")
  566. h_rule_key = param.get('h_rule_key', None)
  567. region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
  568. by_24h_rule_key = param.get('24h_rule_key', None)
  569. by_48h_rule_key = param.get('48h_rule_key', None)
  570. dup_remove = param.get('dup_remove', True)
  571. # 与其他召回视频池去重,存入对应的redis
  572. dup_to_redis_with_timecheck(
  573. h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
  574. region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
  575. by_48h_rule_key=by_48h_rule_key, region=region, data_key=data_key,
  576. rule_rank_h_flag=rule_rank_h_flag, political_filter=political_filter,
  577. shield_config=shield_config, dup_remove=dup_remove
  578. )
  579. # log_.info(f"==============")
  580. def dup_data(h_video_ids, initial_key_name, dup_key_name, region, political_filter, shield_config, dup_remove):
  581. redis_helper = RedisHelper()
  582. if redis_helper.key_exists(key_name=initial_key_name):
  583. initial_data = redis_helper.get_all_data_from_zset(key_name=initial_key_name, with_scores=True)
  584. # 屏蔽视频过滤
  585. initial_video_ids = [int(video_id) for video_id, _ in initial_data]
  586. shield_key_name_list = shield_config.get(region, None)
  587. if shield_key_name_list is not None:
  588. initial_video_ids = filter_shield_video(video_ids=initial_video_ids,
  589. shield_key_name_list=shield_key_name_list)
  590. # 涉政视频过滤
  591. if political_filter is True:
  592. initial_video_ids = filter_political_videos(video_ids=initial_video_ids)
  593. dup_data = {}
  594. # 视频去重逻辑
  595. if dup_remove is True:
  596. for video_id, score in initial_data:
  597. if int(video_id) not in h_video_ids and int(video_id) in initial_video_ids:
  598. dup_data[int(video_id)] = score
  599. h_video_ids.append(int(video_id))
  600. else:
  601. for video_id, score in initial_data:
  602. if int(video_id) in initial_video_ids:
  603. dup_data[int(video_id)] = score
  604. if len(dup_data) > 0:
  605. redis_helper.add_data_with_zset(key_name=dup_key_name, data=dup_data, expire_time=2 * 24 * 3600)
  606. # 限流视频score调整
  607. update_limit_video_score(initial_videos=dup_data, key_name=dup_key_name)
  608. return h_video_ids
  609. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key, by_24h_rule_key, by_48h_rule_key,
  610. region, data_key, rule_rank_h_flag, political_filter, shield_config, dup_remove):
  611. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  612. # ##### 去重更新不区分地域小时级列表,并另存为redis中
  613. if h_rule_key is not None:
  614. h_key_name = \
  615. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{h_rule_key}:" \
  616. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  617. h_dup_key_name = \
  618. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H_H}{region}:{data_key}:{rule_key}:" \
  619. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  620. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_key_name,
  621. dup_key_name=h_dup_key_name, region=region, political_filter=political_filter,
  622. shield_config=shield_config, dup_remove=dup_remove)
  623. # ##### 去重更新地域分组小时级24h列表,并另存为redis中
  624. region_24h_key_name = \
  625. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
  626. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  627. region_24h_dup_key_name = \
  628. f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  629. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  630. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
  631. dup_key_name=region_24h_dup_key_name, region=region, political_filter=political_filter,
  632. shield_config=shield_config, dup_remove=dup_remove)
  633. if rule_rank_h_flag == '48h':
  634. # ##### 去重小程序相对48h更新结果,并另存为redis中
  635. h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H}{data_key}:{by_48h_rule_key}:" \
  636. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  637. h_48h_dup_key_name = \
  638. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
  639. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  640. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_48h_key_name,
  641. dup_key_name=h_48h_dup_key_name, region=region, political_filter=political_filter,
  642. shield_config=shield_config, dup_remove=dup_remove)
  643. # ##### 去重小程序相对48h 筛选后剩余数据 更新结果,并另存为redis中
  644. if by_48h_rule_key == 'rule1':
  645. other_h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H_OTHER}{data_key}:" \
  646. f"{by_48h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  647. other_h_48h_dup_key_name = \
  648. f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
  649. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  650. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_48h_key_name,
  651. dup_key_name=other_h_48h_dup_key_name, region=region,
  652. political_filter=political_filter, shield_config=shield_config,
  653. dup_remove=dup_remove)
  654. else:
  655. # ##### 去重小程序相对24h更新结果,并另存为redis中
  656. h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
  657. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  658. h_24h_dup_key_name = \
  659. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  660. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  661. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
  662. dup_key_name=h_24h_dup_key_name, region=region, political_filter=political_filter,
  663. shield_config=shield_config, dup_remove=dup_remove)
  664. # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
  665. # if by_24h_rule_key in ['rule3', 'rule4']:
  666. other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
  667. f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  668. other_h_24h_dup_key_name = \
  669. f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  670. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  671. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
  672. dup_key_name=other_h_24h_dup_key_name, region=region, political_filter=political_filter,
  673. shield_config=shield_config, dup_remove=dup_remove)
  674. # ##### 去重小程序模型更新结果,并另存为redis中
  675. # model_key_name = get_rov_redis_key(now_date=now_date)
  676. # model_data_dup_key_name = \
  677. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}:{data_key}:{rule_key}:" \
  678. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  679. # h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=model_key_name,
  680. # dup_key_name=model_data_dup_key_name, region=region)
  681. def dup_to_redis_with_timecheck(h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key,
  682. by_24h_rule_key, by_48h_rule_key, region, data_key, rule_rank_h_flag,
  683. political_filter, shield_config, dup_remove):
  684. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  685. # 获取并判断其他数据表更新状态
  686. redis_helper = RedisHelper()
  687. while True:
  688. rule_24h_status = redis_helper.get_data_from_redis(key_name=f"{config_.RULE_24H_DATA_STATUS}:{datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  689. region_24h_status = redis_helper.get_data_from_redis(key_name=f"{config_.REGION_24H_DATA_STATUS}:{datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  690. rule_h_status = redis_helper.get_data_from_redis(key_name=f"{config_.RULE_H_DATA_STATUS}:{datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  691. if rule_24h_status == '1' and region_24h_status == '1' and rule_h_status == '1':
  692. # log_.info("dup data start ....")
  693. # ##### 去重更新不区分地域小时级列表,并另存为redis中
  694. if h_rule_key is not None:
  695. h_key_name = \
  696. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{h_rule_key}:" \
  697. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  698. h_dup_key_name = \
  699. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H_H}{region}:{data_key}:{rule_key}:" \
  700. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  701. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_key_name,
  702. dup_key_name=h_dup_key_name, region=region, political_filter=political_filter,
  703. shield_config=shield_config, dup_remove=dup_remove)
  704. # ##### 去重更新地域分组小时级24h列表,并另存为redis中
  705. region_24h_key_name = \
  706. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
  707. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  708. region_24h_dup_key_name = \
  709. f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  710. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  711. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
  712. dup_key_name=region_24h_dup_key_name, region=region, political_filter=political_filter,
  713. shield_config=shield_config, dup_remove=dup_remove)
  714. if rule_rank_h_flag == '48h':
  715. # ##### 去重小程序相对48h更新结果,并另存为redis中
  716. h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H}{data_key}:{by_48h_rule_key}:" \
  717. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  718. h_48h_dup_key_name = \
  719. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
  720. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  721. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_48h_key_name,
  722. dup_key_name=h_48h_dup_key_name, region=region, political_filter=political_filter,
  723. shield_config=shield_config, dup_remove=dup_remove)
  724. # ##### 去重小程序相对48h 筛选后剩余数据 更新结果,并另存为redis中
  725. if by_48h_rule_key == 'rule1':
  726. other_h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H_OTHER}{data_key}:" \
  727. f"{by_48h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  728. other_h_48h_dup_key_name = \
  729. f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
  730. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  731. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_48h_key_name,
  732. dup_key_name=other_h_48h_dup_key_name, region=region,
  733. political_filter=political_filter, shield_config=shield_config,
  734. dup_remove=dup_remove)
  735. else:
  736. # ##### 去重小程序相对24h更新结果,并另存为redis中
  737. h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
  738. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  739. h_24h_dup_key_name = \
  740. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  741. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  742. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
  743. dup_key_name=h_24h_dup_key_name, region=region, political_filter=political_filter,
  744. shield_config=shield_config, dup_remove=dup_remove)
  745. # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
  746. # if by_24h_rule_key in ['rule3', 'rule4']:
  747. other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
  748. f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  749. other_h_24h_dup_key_name = \
  750. f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  751. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  752. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
  753. dup_key_name=other_h_24h_dup_key_name, region=region,
  754. political_filter=political_filter,
  755. shield_config=shield_config, dup_remove=dup_remove)
  756. break
  757. else:
  758. # 数据没准备好,1分钟后重新检查
  759. # log_.info("dup data wait ....")
  760. time.sleep(60)
  761. # Timer(
  762. # 60,
  763. # dup_to_redis_with_timecheck,
  764. # args=[h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key,
  765. # by_24h_rule_key, by_48h_rule_key, region, data_key, rule_rank_h_flag,
  766. # political_filter, shield_config, dup_remove]
  767. # ).start()
  768. def merge_df(df_left, df_right):
  769. """
  770. df按照videoid, code 合并,对应特征求和
  771. :param df_left:
  772. :param df_right:
  773. :return:
  774. """
  775. df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
  776. df_merged.fillna(0, inplace=True)
  777. feature_list = ['videoid', 'code']
  778. for feature in features:
  779. if feature in ['apptype', 'videoid', 'code']:
  780. continue
  781. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  782. feature_list.append(feature)
  783. return df_merged[feature_list]
  784. def merge_df_with_score(df_left, df_right):
  785. """
  786. df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
  787. :param df_left:
  788. :param df_right:
  789. :return:
  790. """
  791. df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
  792. df_merged.fillna(0, inplace=True)
  793. feature_list = ['videoid', 'code', 'lastonehour_return', 'platform_return', 'score']
  794. for feature in feature_list[2:]:
  795. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  796. return df_merged[feature_list]
  797. def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
  798. rule_rank_h_flag, add_videos_with_pre_h, hour_count):
  799. log_.info(f"region = {region} start...")
  800. # 计算score
  801. region_df = df_merged[df_merged['code'] == region]
  802. log_.info(f'region = {region}, region_df count = {len(region_df)}')
  803. score_df = cal_score(df=region_df, param=rule_param)
  804. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
  805. region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
  806. add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
  807. log_.info(f"region = {region} end!")
  808. def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
  809. rule_rank_h_flag, add_videos_with_pre_h, hour_count):
  810. log_.info(f"region = {region} start...")
  811. region_score_df = df_merged[df_merged['code'] == region]
  812. log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
  813. video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
  814. rule_key=rule_key, param=rule_param, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
  815. add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
  816. log_.info(f"region = {region} end!")
  817. def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
  818. log_.info(f"app_type = {app_type} start...")
  819. data_params_item = params.get('data_params')
  820. rule_params_item = params.get('rule_params')
  821. task_list = []
  822. for param in params.get('params_list'):
  823. data_key = param.get('data')
  824. data_param = data_params_item.get(data_key)
  825. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  826. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  827. df_merged = reduce(merge_df, df_list)
  828. rule_key = param.get('rule')
  829. rule_param = rule_params_item.get(rule_key)
  830. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  831. task_list.extend(
  832. [
  833. gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
  834. now_date, now_h, rule_rank_h_flag)
  835. for region in region_code_list
  836. ]
  837. )
  838. gevent.joinall(task_list)
  839. log_.info(f"app_type = {app_type} end!")
  840. # log_.info(f"app_type = {app_type}")
  841. # task_list = []
  842. # for data_key, data_param in params['data_params'].items():
  843. # log_.info(f"data_key = {data_key}, data_param = {data_param}")
  844. # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  845. # df_merged = reduce(merge_df, df_list)
  846. # for rule_key, rule_param in params['rule_params'].items():
  847. # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  848. # task_list.extend(
  849. # [
  850. # gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
  851. # now_date, now_h)
  852. # for region in region_code_list
  853. # ]
  854. # )
  855. # gevent.joinall(task_list)
  856. def copy_data_for_city(region, city_code, data_key, rule_key, now_date, now_h, shield_config):
  857. """copy 对应数据到城市对应redis,并做相应屏蔽视频过滤"""
  858. log_.info(f"city_code = {city_code} start ...")
  859. redis_helper = RedisHelper()
  860. key_prefix_list = [
  861. config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H, # 地域小时级
  862. config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H, # 地域相对24h
  863. config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H, # 不区分地域相对24h
  864. config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H, # 不区分地域相对24h筛选后
  865. config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H, # rov大列表
  866. ]
  867. for key_prefix in key_prefix_list:
  868. region_key = f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  869. city_key = f"{key_prefix}{city_code}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  870. if not redis_helper.key_exists(key_name=region_key):
  871. continue
  872. region_data = redis_helper.get_all_data_from_zset(key_name=region_key, with_scores=True)
  873. if not region_data:
  874. continue
  875. # 屏蔽视频过滤
  876. region_video_ids = [int(video_id) for video_id, _ in region_data]
  877. shield_key_name_list = shield_config.get(city_code, None)
  878. # shield_key_name_list = config_.SHIELD_CONFIG.get(city_code, None)
  879. if shield_key_name_list is not None:
  880. filtered_video_ids = filter_shield_video(video_ids=region_video_ids,
  881. shield_key_name_list=shield_key_name_list)
  882. else:
  883. filtered_video_ids = region_video_ids
  884. city_data = {}
  885. for video_id, score in region_data:
  886. if int(video_id) in filtered_video_ids:
  887. city_data[int(video_id)] = score
  888. if len(city_data) > 0:
  889. redis_helper.add_data_with_zset(key_name=city_key, data=city_data, expire_time=2 * 24 * 3600)
  890. log_.info(f"city_code = {city_code} end!")
  891. def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
  892. log_.info(f"param = {param} start...")
  893. data_key = param.get('data')
  894. data_param = data_params_item.get(data_key)
  895. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  896. rule_key = param.get('rule')
  897. rule_param = rule_params_item.get(rule_key)
  898. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  899. merge_func = rule_param.get('merge_func', None)
  900. # 是否在地域小时级数据中增加打捞的优质视频
  901. add_videos_with_pre_h = rule_param.get('add_videos_with_pre_h', False)
  902. hour_count = rule_param.get('hour_count', 0)
  903. if merge_func == 2:
  904. score_df_list = []
  905. for apptype, weight in data_param.items():
  906. df = feature_df[feature_df['apptype'] == apptype]
  907. # 计算score
  908. score_df = cal_score(df=df, param=rule_param)
  909. score_df['score'] = score_df['score'] * weight
  910. score_df_list.append(score_df)
  911. # 分数合并
  912. df_merged = reduce(merge_df_with_score, score_df_list)
  913. # 更新平台回流比
  914. df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
  915. task_list = [
  916. gevent.spawn(process_with_region2,
  917. region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
  918. add_videos_with_pre_h, hour_count)
  919. for region in region_code_list
  920. ]
  921. else:
  922. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  923. df_merged = reduce(merge_df, df_list)
  924. task_list = [
  925. gevent.spawn(process_with_region,
  926. region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
  927. add_videos_with_pre_h, hour_count)
  928. for region in region_code_list
  929. ]
  930. gevent.joinall(task_list)
  931. # 特殊城市视频数据准备
  932. # 屏蔽视频过滤
  933. shield_config = rule_param.get('shield_config', config_.SHIELD_CONFIG)
  934. for region, city_list in config_.REGION_CITY_MAPPING.items():
  935. t = [
  936. gevent.spawn(
  937. copy_data_for_city,
  938. region, city_code, data_key, rule_key, now_date, now_h, shield_config
  939. )
  940. for city_code in city_list
  941. ]
  942. gevent.joinall(t)
  943. log_.info(f"param = {param} end!")
  944. def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
  945. # 获取特征数据
  946. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  947. feature_df['apptype'] = feature_df['apptype'].astype(int)
  948. data_params_item = rule_params.get('data_params')
  949. rule_params_item = rule_params.get('rule_params')
  950. params_list = rule_params.get('params_list')
  951. pool = multiprocessing.Pool(processes=len(params_list))
  952. for param in params_list:
  953. pool.apply_async(
  954. func=process_with_param,
  955. args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag)
  956. )
  957. pool.close()
  958. pool.join()
  959. # pool = multiprocessing.Pool(processes=len(config_.APP_TYPE))
  960. # for app_type, params in rule_params.items():
  961. # pool.apply_async(func=process_with_app_type,
  962. # args=(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag))
  963. # pool.close()
  964. # pool.join()
  965. """
  966. for app_type, params in rule_params.items():
  967. log_.info(f"app_type = {app_type} start...")
  968. data_params_item = params.get('data_params')
  969. rule_params_item = params.get('rule_params')
  970. for param in params.get('params_list'):
  971. log_.info(f"param = {param} start...")
  972. data_key = param.get('data')
  973. data_param = data_params_item.get(data_key)
  974. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  975. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  976. df_merged = reduce(merge_df, df_list)
  977. rule_key = param.get('rule')
  978. rule_param = rule_params_item.get(rule_key)
  979. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  980. task_list = []
  981. for region in region_code_list:
  982. t = Thread(target=process_with_region,
  983. args=(region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
  984. )
  985. t.start()
  986. task_list.append(t)
  987. for t in task_list:
  988. t.join()
  989. log_.info(f"param = {param} end!")
  990. log_.info(f"app_type = {app_type} end!")
  991. """
  992. # for app_type, params in rule_params.items():
  993. # log_.info(f"app_type = {app_type}")
  994. # for data_key, data_param in params['data_params'].items():
  995. # log_.info(f"data_key = {data_key}, data_param = {data_param}")
  996. # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  997. # df_merged = reduce(merge_df, df_list)
  998. # for rule_key, rule_param in params['rule_params'].items():
  999. # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  1000. # task_list = [
  1001. # gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
  1002. # for region in region_code_list
  1003. # ]
  1004. # gevent.joinall(task_list)
  1005. # rank
  1006. # for key, value in rule_params.items():
  1007. # log_.info(f"rule = {key}, param = {value}")
  1008. # for region in region_code_list:
  1009. # log_.info(f"region = {region}")
  1010. # # 计算score
  1011. # region_df = feature_df[feature_df['code'] == region]
  1012. # log_.info(f'region_df count = {len(region_df)}')
  1013. # score_df = cal_score(df=region_df, param=value)
  1014. # video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
  1015. # # to-csv
  1016. # score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  1017. # score_df.to_csv(f'./data/{score_filename}')
  1018. # # to-logs
  1019. # log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  1020. # "region_code": region,
  1021. # "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  1022. # "rule_key": key,
  1023. # # "score_df": score_df[['videoid', 'score']]
  1024. # }
  1025. # )
  1026. def h_bottom_process(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h,
  1027. now_date, now_h, rule_rank_h_flag):
  1028. redis_helper = RedisHelper()
  1029. data_key = param.get('data')
  1030. rule_key = param.get('rule')
  1031. rule_param = rule_params_item.get(rule_key)
  1032. log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
  1033. h_rule_key = rule_param.get('h_rule_key', None)
  1034. region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
  1035. by_24h_rule_key = rule_param.get('24h_rule_key', None)
  1036. by_48h_rule_key = rule_param.get('48h_rule_key', None)
  1037. # 涉政视频过滤
  1038. political_filter = param.get('political_filter', None)
  1039. # 屏蔽视频过滤
  1040. shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
  1041. dup_remove = param.get('dup_remove', True)
  1042. for region in region_code_list:
  1043. log_.info(f"region = {region}")
  1044. key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
  1045. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  1046. if initial_data is None:
  1047. initial_data = []
  1048. final_data = dict()
  1049. h_video_ids = []
  1050. for video_id, score in initial_data:
  1051. final_data[video_id] = score
  1052. h_video_ids.append(int(video_id))
  1053. # 存入对应的redis
  1054. final_key_name = \
  1055. f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  1056. if len(final_data) > 0:
  1057. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
  1058. # 与其他召回视频池去重,存入对应的redis
  1059. dup_to_redis_with_timecheck(
  1060. h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
  1061. region_24h_rule_key=region_24h_rule_key, region=region,
  1062. data_key=data_key, by_24h_rule_key=by_24h_rule_key,
  1063. by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
  1064. political_filter=political_filter, shield_config=shield_config, dup_remove=dup_remove
  1065. )
  1066. # 特殊城市视频数据准备
  1067. for region, city_list in config_.REGION_CITY_MAPPING.items():
  1068. t = [
  1069. gevent.spawn(
  1070. copy_data_for_city,
  1071. region, city_code, data_key, rule_key, now_date, now_h, shield_config
  1072. )
  1073. for city_code in city_list
  1074. ]
  1075. gevent.joinall(t)
  1076. def h_rank_bottom(now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
  1077. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  1078. # 获取rov模型结果
  1079. # redis_helper = RedisHelper()
  1080. if now_h == 0:
  1081. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  1082. redis_h = 23
  1083. else:
  1084. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  1085. redis_h = now_h - 1
  1086. # 以上一小时的地域分组数据作为当前小时的数据
  1087. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
  1088. rule_params_item = rule_params.get('rule_params')
  1089. params_list = rule_params.get('params_list')
  1090. pool = multiprocessing.Pool(processes=len(params_list))
  1091. for param in params_list:
  1092. pool.apply_async(
  1093. func=h_bottom_process,
  1094. args=(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h, now_date, now_h, rule_rank_h_flag)
  1095. )
  1096. pool.close()
  1097. pool.join()
  1098. # for param in rule_params.get('params_list'):
  1099. # data_key = param.get('data')
  1100. # rule_key = param.get('rule')
  1101. # rule_param = rule_params_item.get(rule_key)
  1102. # log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
  1103. # region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
  1104. # by_24h_rule_key = rule_param.get('24h_rule_key', None)
  1105. # by_48h_rule_key = rule_param.get('48h_rule_key', None)
  1106. # # 涉政视频过滤
  1107. # political_filter = param.get('political_filter', None)
  1108. # # 屏蔽视频过滤
  1109. # shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
  1110. # for region in region_code_list:
  1111. # log_.info(f"region = {region}")
  1112. # key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
  1113. # initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  1114. # if initial_data is None:
  1115. # initial_data = []
  1116. # final_data = dict()
  1117. # h_video_ids = []
  1118. # for video_id, score in initial_data:
  1119. # final_data[video_id] = score
  1120. # h_video_ids.append(int(video_id))
  1121. # # 存入对应的redis
  1122. # final_key_name = \
  1123. # f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  1124. # if len(final_data) > 0:
  1125. # redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
  1126. # # 与其他召回视频池去重,存入对应的redis
  1127. # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key,
  1128. # region_24h_rule_key=region_24h_rule_key, region=region,
  1129. # data_key=data_key, by_24h_rule_key=by_24h_rule_key,
  1130. # by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
  1131. # political_filter=political_filter, shield_config=shield_config)
  1132. # # 特殊城市视频数据准备
  1133. # for region, city_list in config_.REGION_CITY_MAPPING.items():
  1134. # t = [
  1135. # gevent.spawn(
  1136. # copy_data_for_city,
  1137. # region, city_code, data_key, rule_key, now_date, now_h, shield_config
  1138. # )
  1139. # for city_code in city_list
  1140. # ]
  1141. # gevent.joinall(t)
  1142. def h_timer_check():
  1143. try:
  1144. rule_rank_h_flag = sys.argv[1]
  1145. # rule_rank_h_flag = '24h'
  1146. if rule_rank_h_flag == '48h':
  1147. rule_params = config_.RULE_PARAMS_REGION_APP_TYPE_48H
  1148. else:
  1149. rule_params = config_.RULE_PARAMS_REGION_APP_TYPE
  1150. project = config_.PROJECT_REGION_APP_TYPE
  1151. table = config_.TABLE_REGION_APP_TYPE
  1152. region_code_list = [code for region, code in region_code.items()]
  1153. now_date = datetime.datetime.today()
  1154. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}, rule_rank_h_flag: {rule_rank_h_flag}")
  1155. now_h = datetime.datetime.now().hour
  1156. now_min = datetime.datetime.now().minute
  1157. if now_h == 0:
  1158. h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
  1159. rule_rank_h_flag=rule_rank_h_flag)
  1160. log_.info(f"region_h_data end!")
  1161. return
  1162. # 查看当前小时更新的数据是否已准备好
  1163. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  1164. if h_data_count > 0:
  1165. log_.info(f'region_h_data_count = {h_data_count}')
  1166. # 数据准备好,进行更新
  1167. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  1168. project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
  1169. log_.info(f"region_h_data end!")
  1170. elif now_min > 40:
  1171. log_.info('h_recall data is None, use bottom data!')
  1172. h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
  1173. rule_rank_h_flag=rule_rank_h_flag)
  1174. log_.info(f"region_h_data end!")
  1175. else:
  1176. # 数据没准备好,1分钟后重新检查
  1177. Timer(60, h_timer_check).start()
  1178. # send_msg_to_feishu(
  1179. # webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  1180. # key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  1181. # msg_text=f"rov-offline{config_.ENV_TEXT} - 推荐视频数据更新完成\n"
  1182. # f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d')}\n"
  1183. # f"now_h: {now_h}\n"
  1184. # f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}"
  1185. # )
  1186. except Exception as e:
  1187. log_.error(f"地域分组小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  1188. send_msg_to_feishu(
  1189. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  1190. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  1191. msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组小时级数据更新失败\n"
  1192. f"exception: {e}\n"
  1193. f"traceback: {traceback.format_exc()}"
  1194. )
  1195. if __name__ == '__main__':
  1196. log_.info(f"region_h_data start...")
  1197. h_timer_check()