123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- import os
- import random
- import time
- import lightgbm as lgb
- import pandas as pd
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import mean_absolute_error, r2_score, mean_absolute_percentage_error
- from config import set_config
- from utils import read_from_pickle, write_to_pickle, data_normalization, request_post, filter_video_status
- from log import Log
- from db_helper import RedisHelper, MysqlHelper
- config_ = set_config()
- log_ = Log()
- def process_data(filename):
- """
- 数据清洗、预处理
- :param filename: type-DataFrame
- :return: x, y, video_ids, features
- """
- # 获取数据
- data = read_from_pickle(filename)
- # 获取y,并将 y <= 0 的值更新为1
- data['futre7dayreturn'].loc[data['futre7dayreturn'] <= 0] = 1
- y = data['futre7dayreturn']
- # 获取视频id列
- video_ids = data['videoid']
- # 获取x
- drop_columns = ['videoid', 'dt', 'futre7dayreturn', 'videotags', 'words_without_tags']
- x = data.drop(columns=drop_columns)
- # 计算后一天的回流比前一天的回流差值
- x['stage_four_return_added'] = x['stage_four_retrn'] - x['stage_three_retrn']
- x['stage_three_return_added'] = x['stage_three_retrn'] - x['stage_two_retrn']
- x['stage_two_return_added'] = x['stage_two_retrn'] - x['stage_one_retrn']
- # 计算后一天回流比前一天回流的增长率
- x['stage_four_return_ratio'] = x['stage_four_return_added'] / x['stage_four_retrn']
- x['stage_three_return_ratio'] = x['stage_three_return_added'] / x['stage_three_retrn']
- x['stage_two_return_ratio'] = x['stage_two_return_added'] / x['stage_two_retrn']
- # 缺失值填充为0
- x.fillna(0)
- # 获取当前所使用的特征列表
- features = list(x)
- return x, y, video_ids, features
- def train(x, y, features):
- """
- 训练模型
- :param x: X
- :param y: Y
- :param features: 特征列表
- :return: None
- """
- # 训练集、测试集分割
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33)
- log_.info('x_train shape: {}, y_train shape: {}'.format(x_train.shape, y_train.shape))
- log_.info('x_test shape: {}, y_test shape: {}'.format(x_test.shape, y_test.shape))
- # 训练参数设置
- params = {
- "objective": "regression",
- "reg_sqrt": True,
- "metric": "mape",
- "max_depth": -1,
- "num_leaves": 50,
- "learning_rate": 0.1,
- "bagging_fraction": 0.7,
- "feature_fraction": 0.7,
- "bagging_freq": 8,
- "bagging_seed": 2018,
- "lambda_l1": 0.11,
- "boosting": "dart",
- "nthread": 4,
- "verbosity": -1
- }
- # 初始化数据集
- train_set = lgb.Dataset(data=x_train, label=y_train)
- test_set = lgb.Dataset(data=x_test, label=y_test)
- # 模型训练
- evals_result = {}
- model = lgb.train(params=params, train_set=train_set, num_boost_round=5000,
- valid_sets=[test_set], early_stopping_rounds=100,
- verbose_eval=100, evals_result=evals_result)
- # 将模型特征重要度存入csv
- feature_importance_data = {'feature': features, 'feature_importance': model.feature_importance()}
- feature_importance_filename = 'model_feature_importance.csv'
- pack_result_to_csv(filename=feature_importance_filename, sort_columns=['feature_importance'],
- ascending=False, **feature_importance_data)
- # 测试集预测
- pre_y_test = model.predict(data=x_test, num_iteration=model.best_iteration)
- y_test = y_test.values
- err_mape = mean_absolute_percentage_error(y_test, pre_y_test)
- r2 = r2_score(y_test, pre_y_test)
- # 将测试集结果存入csv
- test_data = {'pre_y_test': pre_y_test, 'y_test': y_test}
- test_result_filename = 'test_result.csv'
- pack_result_to_csv(filename=test_result_filename, sort_columns=['pre_y_test'], ascending=False, **test_data)
- log_.info('err_mape={}, r2={}'.format(err_mape, r2))
- # 保存模型
- write_to_pickle(data=model, filename=config_.MODEL_FILENAME)
- def pack_result_to_csv(filename, sort_columns=None, filepath=config_.DATA_DIR_PATH, ascending=True, **data):
- """
- 打包数据并存入csv
- :param filename: csv文件名
- :param sort_columns: 指定排序列名列名,type-list, 默认为None
- :param filepath: csv文件存放路径,默认为config_.DATA_DIR_PATH
- :param ascending: 是否按指定列的数组升序排列,默认为True,即升序排列
- :param data: 数据
- :return: None
- """
- if not os.path.exists(filepath):
- os.makedirs(filepath)
- file = os.path.join(filepath, filename)
- df = pd.DataFrame(data=data)
- if sort_columns:
- df = df.sort_values(by=sort_columns, ascending=ascending)
- df.to_csv(file, index=False)
- def predict():
- """预测"""
- # 读取预测数据并进行清洗
- x, y, video_ids, _ = process_data(config_.PREDICT_DATA_FILENAME)
- log_.info('predict data shape: x={}'.format(x.shape))
- # 获取训练好的模型
- model = read_from_pickle(filename=config_.MODEL_FILENAME)
- # 预测
- y_ = model.predict(x)
- log_.info('predict finished!')
- # 将结果进行归一化到[0, 100]
- normal_y_ = data_normalization(list(y_))
- log_.info('normalization finished!')
- # 打包预测结果存入csv
- predict_data = {'normal_y_': normal_y_, 'y_': y_, 'y': y, 'video_ids': video_ids}
- predict_result_filename = 'predict.csv'
- pack_result_to_csv(filename=predict_result_filename, sort_columns=['normal_y_'], ascending=False, **predict_data)
- # 上传redis
- redis_data = {}
- json_data = []
- for i in range(len(video_ids)):
- redis_data[video_ids[i]] = normal_y_[i]
- json_data.append({'videoId': video_ids[i], 'rovScore': normal_y_[i]})
- key_name = config_.RECALL_KEY_NAME_PREFIX + time.strftime('%Y%m%d')
- redis_helper = RedisHelper()
- redis_helper.add_data_with_zset(key_name=key_name, data=redis_data)
- log_.info('data to redis finished!')
- # 通知后端更新数据
- result = request_post(request_url=config_.NOTIFY_BACKEND_UPDATE_ROV_SCORE_URL, request_data={'videos': json_data})
- if result['code'] == 0:
- log_.info('notify backend success!')
- else:
- log_.error('notify backend fail!')
- def predict_test():
- """测试环境数据生成"""
- # 获取测试环境中最近发布的40000条视频
- mysql_info = {
- 'host': 'rm-bp1k5853td1r25g3n690.mysql.rds.aliyuncs.com',
- 'port': 3306,
- 'user': 'wx2016_longvideo',
- 'password': 'wx2016_longvideoP@assword1234',
- 'db': 'longvideo'
- }
- sql = "SELECT id FROM wx_video ORDER BY id DESC LIMIT 40000;"
- mysql_helper = MysqlHelper(mysql_info=mysql_info)
- data = mysql_helper.get_data(sql=sql)
- video_ids = [video[0] for video in data]
- # 视频状态过滤
- filtered_videos = filter_video_status(video_ids)
- log_.info('filtered_videos nums={}'.format(len(filtered_videos)))
- # 随机生成 0-100 数作为分数
- redis_data = {}
- json_data = []
- for video_id in filtered_videos:
- score = random.uniform(0, 100)
- redis_data[video_id] = score
- json_data.append({'videoId': video_id, 'rovScore': score})
- # 上传Redis
- redis_helper = RedisHelper()
- key_name = config_.RECALL_KEY_NAME_PREFIX + time.strftime('%Y%m%d')
- redis_helper.add_data_with_zset(key_name=key_name, data=redis_data)
- log_.info('test data to redis finished!')
- # 通知后端更新数据
- result = request_post(request_url=config_.NOTIFY_BACKEND_UPDATE_ROV_SCORE_URL, request_data={'videos': json_data})
- if result['code'] == 0:
- log_.info('notify backend success!')
- else:
- log_.error('notify backend fail!')
- if __name__ == '__main__':
- log_.info('rov model train start...')
- train_start = time.time()
- train_filename = config_.TRAIN_DATA_FILENAME
- X, Y, videos, fea = process_data(filename=train_filename)
- log_.info('X_shape = {}, Y_sahpe = {}'.format(X.shape, Y.shape))
- train(X, Y, features=fea)
- train_end = time.time()
- log_.info('rov model train end, execute time = {}ms'.format((train_end - train_start)*1000))
- log_.info('rov model predict start...')
- predict_start = time.time()
- predict()
- predict_end = time.time()
- log_.info('rov model predict end, execute time = {}ms'.format((predict_end - predict_start)*1000))
|