rov_train.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. import os
  2. import random
  3. import time
  4. import lightgbm as lgb
  5. import pandas as pd
  6. from sklearn.model_selection import train_test_split
  7. from sklearn.metrics import mean_absolute_error, r2_score, mean_absolute_percentage_error
  8. from config import set_config
  9. from utils import read_from_pickle, write_to_pickle, data_normalization, request_post, filter_video_status
  10. from log import Log
  11. from db_helper import RedisHelper, MysqlHelper
  12. config_ = set_config()
  13. log_ = Log()
  14. def process_data(filename):
  15. """
  16. 数据清洗、预处理
  17. :param filename: type-DataFrame
  18. :return: x, y, video_ids, features
  19. """
  20. # 获取数据
  21. data = read_from_pickle(filename)
  22. # 获取y,并将 y <= 0 的值更新为1
  23. data['futre7dayreturn'].loc[data['futre7dayreturn'] <= 0] = 1
  24. y = data['futre7dayreturn']
  25. # 获取视频id列
  26. video_ids = data['videoid']
  27. # 获取x
  28. drop_columns = ['videoid', 'dt', 'futre7dayreturn', 'videotags', 'words_without_tags']
  29. x = data.drop(columns=drop_columns)
  30. # 计算后一天的回流比前一天的回流差值
  31. x['stage_four_return_added'] = x['stage_four_retrn'] - x['stage_three_retrn']
  32. x['stage_three_return_added'] = x['stage_three_retrn'] - x['stage_two_retrn']
  33. x['stage_two_return_added'] = x['stage_two_retrn'] - x['stage_one_retrn']
  34. # 计算后一天回流比前一天回流的增长率
  35. x['stage_four_return_ratio'] = x['stage_four_return_added'] / x['stage_four_retrn']
  36. x['stage_three_return_ratio'] = x['stage_three_return_added'] / x['stage_three_retrn']
  37. x['stage_two_return_ratio'] = x['stage_two_return_added'] / x['stage_two_retrn']
  38. # 缺失值填充为0
  39. x.fillna(0)
  40. # 获取当前所使用的特征列表
  41. features = list(x)
  42. return x, y, video_ids, features
  43. def train(x, y, features):
  44. """
  45. 训练模型
  46. :param x: X
  47. :param y: Y
  48. :param features: 特征列表
  49. :return: None
  50. """
  51. # 训练集、测试集分割
  52. x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33)
  53. log_.info('x_train shape: {}, y_train shape: {}'.format(x_train.shape, y_train.shape))
  54. log_.info('x_test shape: {}, y_test shape: {}'.format(x_test.shape, y_test.shape))
  55. # 训练参数设置
  56. params = {
  57. "objective": "regression",
  58. "reg_sqrt": True,
  59. "metric": "mape",
  60. "max_depth": -1,
  61. "num_leaves": 50,
  62. "learning_rate": 0.1,
  63. "bagging_fraction": 0.7,
  64. "feature_fraction": 0.7,
  65. "bagging_freq": 8,
  66. "bagging_seed": 2018,
  67. "lambda_l1": 0.11,
  68. "boosting": "dart",
  69. "nthread": 4,
  70. "verbosity": -1
  71. }
  72. # 初始化数据集
  73. train_set = lgb.Dataset(data=x_train, label=y_train)
  74. test_set = lgb.Dataset(data=x_test, label=y_test)
  75. # 模型训练
  76. evals_result = {}
  77. model = lgb.train(params=params, train_set=train_set, num_boost_round=5000,
  78. valid_sets=[test_set], early_stopping_rounds=100,
  79. verbose_eval=100, evals_result=evals_result)
  80. # 将模型特征重要度存入csv
  81. feature_importance_data = {'feature': features, 'feature_importance': model.feature_importance()}
  82. feature_importance_filename = 'model_feature_importance.csv'
  83. pack_result_to_csv(filename=feature_importance_filename, sort_columns=['feature_importance'],
  84. ascending=False, **feature_importance_data)
  85. # 测试集预测
  86. pre_y_test = model.predict(data=x_test, num_iteration=model.best_iteration)
  87. y_test = y_test.values
  88. err_mape = mean_absolute_percentage_error(y_test, pre_y_test)
  89. r2 = r2_score(y_test, pre_y_test)
  90. # 将测试集结果存入csv
  91. test_data = {'pre_y_test': pre_y_test, 'y_test': y_test}
  92. test_result_filename = 'test_result.csv'
  93. pack_result_to_csv(filename=test_result_filename, sort_columns=['pre_y_test'], ascending=False, **test_data)
  94. log_.info('err_mape={}, r2={}'.format(err_mape, r2))
  95. # 保存模型
  96. write_to_pickle(data=model, filename=config_.MODEL_FILENAME)
  97. def pack_result_to_csv(filename, sort_columns=None, filepath=config_.DATA_DIR_PATH, ascending=True, **data):
  98. """
  99. 打包数据并存入csv
  100. :param filename: csv文件名
  101. :param sort_columns: 指定排序列名列名,type-list, 默认为None
  102. :param filepath: csv文件存放路径,默认为config_.DATA_DIR_PATH
  103. :param ascending: 是否按指定列的数组升序排列,默认为True,即升序排列
  104. :param data: 数据
  105. :return: None
  106. """
  107. if not os.path.exists(filepath):
  108. os.makedirs(filepath)
  109. file = os.path.join(filepath, filename)
  110. df = pd.DataFrame(data=data)
  111. if sort_columns:
  112. df = df.sort_values(by=sort_columns, ascending=ascending)
  113. df.to_csv(file, index=False)
  114. def predict():
  115. """预测"""
  116. # 读取预测数据并进行清洗
  117. x, y, video_ids, _ = process_data(config_.PREDICT_DATA_FILENAME)
  118. log_.info('predict data shape: x={}'.format(x.shape))
  119. # 获取训练好的模型
  120. model = read_from_pickle(filename=config_.MODEL_FILENAME)
  121. # 预测
  122. y_ = model.predict(x)
  123. log_.info('predict finished!')
  124. # 将结果进行归一化到[0, 100]
  125. normal_y_ = data_normalization(list(y_))
  126. log_.info('normalization finished!')
  127. # 打包预测结果存入csv
  128. predict_data = {'normal_y_': normal_y_, 'y_': y_, 'y': y, 'video_ids': video_ids}
  129. predict_result_filename = 'predict.csv'
  130. pack_result_to_csv(filename=predict_result_filename, sort_columns=['normal_y_'], ascending=False, **predict_data)
  131. # 上传redis
  132. redis_data = {}
  133. json_data = []
  134. for i in range(len(video_ids)):
  135. redis_data[video_ids[i]] = normal_y_[i]
  136. json_data.append({'videoId': video_ids[i], 'rovScore': normal_y_[i]})
  137. key_name = config_.RECALL_KEY_NAME_PREFIX + time.strftime('%Y%m%d')
  138. redis_helper = RedisHelper()
  139. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data)
  140. log_.info('data to redis finished!')
  141. # 通知后端更新数据
  142. result = request_post(request_url=config_.NOTIFY_BACKEND_UPDATE_ROV_SCORE_URL, request_data={'videos': json_data})
  143. if result['code'] == 0:
  144. log_.info('notify backend success!')
  145. else:
  146. log_.error('notify backend fail!')
  147. def predict_test():
  148. """测试环境数据生成"""
  149. # 获取测试环境中最近发布的40000条视频
  150. mysql_info = {
  151. 'host': 'rm-bp1k5853td1r25g3n690.mysql.rds.aliyuncs.com',
  152. 'port': 3306,
  153. 'user': 'wx2016_longvideo',
  154. 'password': 'wx2016_longvideoP@assword1234',
  155. 'db': 'longvideo'
  156. }
  157. sql = "SELECT id FROM wx_video ORDER BY id DESC LIMIT 40000;"
  158. mysql_helper = MysqlHelper(mysql_info=mysql_info)
  159. data = mysql_helper.get_data(sql=sql)
  160. video_ids = [video[0] for video in data]
  161. # 视频状态过滤
  162. filtered_videos = filter_video_status(video_ids)
  163. log_.info('filtered_videos nums={}'.format(len(filtered_videos)))
  164. # 随机生成 0-100 数作为分数
  165. redis_data = {}
  166. json_data = []
  167. for video_id in filtered_videos:
  168. score = random.uniform(0, 100)
  169. redis_data[video_id] = score
  170. json_data.append({'videoId': video_id, 'rovScore': score})
  171. # 上传Redis
  172. redis_helper = RedisHelper()
  173. key_name = config_.RECALL_KEY_NAME_PREFIX + time.strftime('%Y%m%d')
  174. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data)
  175. log_.info('test data to redis finished!')
  176. # 通知后端更新数据
  177. result = request_post(request_url=config_.NOTIFY_BACKEND_UPDATE_ROV_SCORE_URL, request_data={'videos': json_data})
  178. if result['code'] == 0:
  179. log_.info('notify backend success!')
  180. else:
  181. log_.error('notify backend fail!')
  182. if __name__ == '__main__':
  183. log_.info('rov model train start...')
  184. train_start = time.time()
  185. train_filename = config_.TRAIN_DATA_FILENAME
  186. X, Y, videos, fea = process_data(filename=train_filename)
  187. log_.info('X_shape = {}, Y_sahpe = {}'.format(X.shape, Y.shape))
  188. train(X, Y, features=fea)
  189. train_end = time.time()
  190. log_.info('rov model train end, execute time = {}ms'.format((train_end - train_start)*1000))
  191. log_.info('rov model predict start...')
  192. predict_start = time.time()
  193. predict()
  194. predict_end = time.time()
  195. log_.info('rov model predict end, execute time = {}ms'.format((predict_end - predict_start)*1000))