|
@@ -1,7 +1,8 @@
|
|
|
-import os
|
|
|
import pandas as pd
|
|
|
import xgboost as xgb
|
|
|
from xgboost.sklearn import XGBClassifier
|
|
|
+from utils import RedisHelper
|
|
|
+redis_helper = RedisHelper()
|
|
|
|
|
|
|
|
|
# 1. 模型加载
|
|
@@ -30,7 +31,15 @@ res_df = pd.merge(pre_df_0, pre_df_1, how='left', on=['apptype', 'mid', 'videoid
|
|
|
res_df['res_predict'] = res_df['y_0'] - res_df['y_1']
|
|
|
print(res_df.head())
|
|
|
|
|
|
-# 5. to redis
|
|
|
-
|
|
|
-
|
|
|
+# 5. to csv
|
|
|
+res_df.to_csv('./data/predict_data/predict_res.csv', index=False)
|
|
|
+
|
|
|
+# 6. to redis
|
|
|
+for ind, row in res_df.iterrows():
|
|
|
+ app_type = row['apptype']
|
|
|
+ mid = row['mid']
|
|
|
+ video_id = row['videoid']
|
|
|
+ pre_res = row['res_predict']
|
|
|
+ key = f"ad:xgb:predict:{app_type}:{mid}:{video_id}"
|
|
|
+ redis_helper.set_data_to_redis(key_name=key, value=pre_res, expire_time=48*3600)
|
|
|
|