|
@@ -12,16 +12,25 @@ model._Booster = booster
|
|
|
# 2. 预测:ad_status = 0, 不出广告
|
|
|
df_0 = pd.read_csv('./data/predict_data/predict_data_0.csv')
|
|
|
columns_0 = df_0.columns.values.tolist()
|
|
|
+columns_0.remove('videoid')
|
|
|
y_pred_proba_0 = model.predict_proba(df_0[columns_0[2:]])
|
|
|
-df_0['y_0'] = y_pred_proba_0
|
|
|
+df_0['y_0'] = [x[1] for x in y_pred_proba_0]
|
|
|
+pre_df_0 = df_0[['apptype', 'mid', 'videoid', 'y_0']].copy()
|
|
|
|
|
|
# 3. 预测:ad_status = 1, 不出广告
|
|
|
df_1 = pd.read_csv('./data/predict_data/predict_data_1.csv')
|
|
|
columns_1 = df_1.columns.values.tolist()
|
|
|
+columns_1.remove('videoid')
|
|
|
y_pred_proba_1 = model.predict_proba(df_1[columns_1[2:]])
|
|
|
-df_0['y_1'] = y_pred_proba_1
|
|
|
+df_1['y_1'] = [x[1] for x in y_pred_proba_1]
|
|
|
+pre_df_1 = df_1[['apptype', 'mid', 'videoid', 'y_1']].copy()
|
|
|
|
|
|
# 4. merge 结果
|
|
|
-res_df = pd.merge(df_0, df_1, how='left', on=['apptype', 'mid', 'videoid'])
|
|
|
-print(res_df.head())
|
|
|
+res_df = pd.merge(pre_df_0, pre_df_1, how='left', on=['apptype', 'mid', 'videoid'])
|
|
|
res_df['res_predict'] = res_df['y_0'] - res_df['y_1']
|
|
|
+print(res_df.head())
|
|
|
+
|
|
|
+# 5. to redis
|
|
|
+
|
|
|
+
|
|
|
+
|