| 
					
				 | 
			
			
				@@ -0,0 +1,100 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import pandas as pd 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import numpy as np 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import xgboost as xgb 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from tqdm import tqdm 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import sys 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from scipy.stats import pearsonr 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from itertools import combinations 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from bisect import bisect_left, bisect_right, insort 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def apply_title(row): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return row.replace("\n", "") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    except Exception as e: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        print(str(e)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return row 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def func_make_data(file_path: str): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_list = [pd.read_csv(file) for file in file_path.split(",")] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df = pd.concat(df_list, ignore_index=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    print(df.columns.tolist()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # df["title"] = df["title"].apply(apply_title) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for col in [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        '日期', '小时', 'rank', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        '曝光量', '分享次数', '多层回流人数', 'return_rate', 'return_cnt', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        'str', 'rosn', 'rovn', 'vovh24', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        'score_552', 'score_562', 'score_567', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         'fmrov', 'hasreturnrovscore', 'vov_score_562', 'vov_score_567' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        df[col] = pd.to_numeric(df[col], errors='coerce') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for col in ['实验组']: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if col not in df.columns: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            df[col] = "无" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            df[col] = df[col].astype(str) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df["score_552_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df["score_562_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) * (1 + 1 * df["vov_score_562"]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df["score_567_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) + 0.05 * df["vov_score_567"] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df.fillna(0, inplace=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df = df[df["实验组"] != "未知"].reset_index(drop=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return df 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 计算每个 hour 的皮尔逊相关系数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def calculate_correlation(group, col_a, col_b): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    a = group[col_a] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    b = group[col_b] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return pearsonr(a, b)[0]  # 取皮尔逊相关系数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def calculate_auc_v2(group, col_a, col_b): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    sorted_group = group.sort_values(by=col_a).reset_index(drop=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    success_count = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    b_list = []  # 维护一个有序的 col_b 列值列表 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for index, row in sorted_group.iterrows(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        current_a = row[col_a] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        current_b = row[col_b] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # 使用二分法查找 b_list 中当前值的位置 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        pos_left = bisect_left(b_list, current_b) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        pos_right = bisect_right(b_list, current_b) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        pos = pos_left + (pos_right - pos_left)/2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # 成功的计数:所有当前值之前的值都小于等于 current_a 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        success_count += pos  # 在 b_list 中的值个数即为成功计数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # 插入当前 col_b 值到 b_list 中 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        insort(b_list, current_b) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # 计算成功概率 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    total_combinations = len(group) * (len(group) - 1) / 2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    success_probability = success_count / total_combinations if total_combinations > 0 else 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return success_probability 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def func(df, rank_limit, col_a, col_b): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    c = df[df["rank"] <= rank_limit].groupby(['小时', '实验组']).apply(calculate_auc_v2, col_a=col_a, col_b=col_b).reset_index() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    c.columns = ['小时', '实验组', col_a + "-" + col_b] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    print("完成:{}和{}的计算。".format(col_a, col_b)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return c 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    date_train = sys.argv[1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+except Exception as e: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    date_train = "~/Downloads/20241109_top1000(1).csv" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+df = func_make_data(date_train) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+for rank_limit in [100, 500, 1000]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    print("date_train:rank_limit:{}-{}".format(date_train, rank_limit)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_01 = func(df, rank_limit, "vovh24", "score_552") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_02 = func(df, rank_limit, "vovh24", "score_562") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_03 = func(df, rank_limit, "vovh24", "score_567") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_04 = func(df, rank_limit, "rovn", "score_552") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_05 = func(df, rank_limit, "rovn", "score_562") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_06 = func(df, rank_limit, "rovn", "score_567") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_07 = func(df, rank_limit, "vovh24", "score_552_offline") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_08 = func(df, rank_limit, "vovh24", "score_562_offline") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_09 = func(df, rank_limit, "vovh24", "score_567_offline") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_10 = func(df, rank_limit, "rovn", "score_552_offline") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_11 = func(df, rank_limit, "rovn", "score_562_offline") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_12 = func(df, rank_limit, "rovn", "score_567_offline") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_list = [df_01, df_02, df_03, df_04, df_05, df_06, df_07, df_08, df_09, df_10, df_11, df_12] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_merged = pd.concat(df_list, axis=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_select = df_merged.iloc[:, [0] + [3*i+2 for i in range(len(df_list))]] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    df_select.to_csv("产品4_20241109_top1000-相关性-top{}.csv".format(rank_limit), index=False) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 |