|
@@ -0,0 +1,100 @@
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+import xgboost as xgb
|
|
|
+from tqdm import tqdm
|
|
|
+import sys
|
|
|
+from scipy.stats import pearsonr
|
|
|
+from itertools import combinations
|
|
|
+from bisect import bisect_left, bisect_right, insort
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def apply_title(row):
|
|
|
+ try:
|
|
|
+ return row.replace("\n", "")
|
|
|
+ except Exception as e:
|
|
|
+ print(str(e))
|
|
|
+ return row
|
|
|
+def func_make_data(file_path: str):
|
|
|
+ df_list = [pd.read_csv(file) for file in file_path.split(",")]
|
|
|
+ df = pd.concat(df_list, ignore_index=True)
|
|
|
+ print(df.columns.tolist())
|
|
|
+ # df["title"] = df["title"].apply(apply_title)
|
|
|
+ for col in [
|
|
|
+ '日期', '小时', 'rank',
|
|
|
+ '曝光量', '分享次数', '多层回流人数', 'return_rate', 'return_cnt',
|
|
|
+ 'str', 'rosn', 'rovn', 'vovh24',
|
|
|
+ 'score_552', 'score_562', 'score_567',
|
|
|
+ 'fmrov', 'hasreturnrovscore', 'vov_score_562', 'vov_score_567'
|
|
|
+ ]:
|
|
|
+ df[col] = pd.to_numeric(df[col], errors='coerce')
|
|
|
+ for col in ['实验组']:
|
|
|
+ if col not in df.columns:
|
|
|
+ df[col] = "无"
|
|
|
+ else:
|
|
|
+ df[col] = df[col].astype(str)
|
|
|
+ df["score_552_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"])
|
|
|
+ df["score_562_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) * (1 + 1 * df["vov_score_562"])
|
|
|
+ df["score_567_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) + 0.05 * df["vov_score_567"]
|
|
|
+ df.fillna(0, inplace=True)
|
|
|
+ df = df[df["实验组"] != "未知"].reset_index(drop=True)
|
|
|
+ return df
|
|
|
+
|
|
|
+# 计算每个 hour 的皮尔逊相关系数
|
|
|
+def calculate_correlation(group, col_a, col_b):
|
|
|
+ a = group[col_a]
|
|
|
+ b = group[col_b]
|
|
|
+ return pearsonr(a, b)[0] # 取皮尔逊相关系数
|
|
|
+
|
|
|
+def calculate_auc_v2(group, col_a, col_b):
|
|
|
+ sorted_group = group.sort_values(by=col_a).reset_index(drop=True)
|
|
|
+ success_count = 0
|
|
|
+ b_list = [] # 维护一个有序的 col_b 列值列表
|
|
|
+ for index, row in sorted_group.iterrows():
|
|
|
+ current_a = row[col_a]
|
|
|
+ current_b = row[col_b]
|
|
|
+ # 使用二分法查找 b_list 中当前值的位置
|
|
|
+ pos_left = bisect_left(b_list, current_b)
|
|
|
+ pos_right = bisect_right(b_list, current_b)
|
|
|
+ pos = pos_left + (pos_right - pos_left)/2
|
|
|
+ # 成功的计数:所有当前值之前的值都小于等于 current_a
|
|
|
+ success_count += pos # 在 b_list 中的值个数即为成功计数
|
|
|
+ # 插入当前 col_b 值到 b_list 中
|
|
|
+ insort(b_list, current_b)
|
|
|
+ # 计算成功概率
|
|
|
+ total_combinations = len(group) * (len(group) - 1) / 2
|
|
|
+ success_probability = success_count / total_combinations if total_combinations > 0 else 0
|
|
|
+ return success_probability
|
|
|
+
|
|
|
+def func(df, rank_limit, col_a, col_b):
|
|
|
+ c = df[df["rank"] <= rank_limit].groupby(['小时', '实验组']).apply(calculate_auc_v2, col_a=col_a, col_b=col_b).reset_index()
|
|
|
+ c.columns = ['小时', '实验组', col_a + "-" + col_b]
|
|
|
+ print("完成:{}和{}的计算。".format(col_a, col_b))
|
|
|
+ return c
|
|
|
+
|
|
|
+try:
|
|
|
+ date_train = sys.argv[1]
|
|
|
+except Exception as e:
|
|
|
+ date_train = "~/Downloads/20241109_top1000(1).csv"
|
|
|
+df = func_make_data(date_train)
|
|
|
+for rank_limit in [100, 500, 1000]:
|
|
|
+ print("date_train:rank_limit:{}-{}".format(date_train, rank_limit))
|
|
|
+ df_01 = func(df, rank_limit, "vovh24", "score_552")
|
|
|
+ df_02 = func(df, rank_limit, "vovh24", "score_562")
|
|
|
+ df_03 = func(df, rank_limit, "vovh24", "score_567")
|
|
|
+ df_04 = func(df, rank_limit, "rovn", "score_552")
|
|
|
+ df_05 = func(df, rank_limit, "rovn", "score_562")
|
|
|
+ df_06 = func(df, rank_limit, "rovn", "score_567")
|
|
|
+ df_07 = func(df, rank_limit, "vovh24", "score_552_offline")
|
|
|
+ df_08 = func(df, rank_limit, "vovh24", "score_562_offline")
|
|
|
+ df_09 = func(df, rank_limit, "vovh24", "score_567_offline")
|
|
|
+ df_10 = func(df, rank_limit, "rovn", "score_552_offline")
|
|
|
+ df_11 = func(df, rank_limit, "rovn", "score_562_offline")
|
|
|
+ df_12 = func(df, rank_limit, "rovn", "score_567_offline")
|
|
|
+ df_list = [df_01, df_02, df_03, df_04, df_05, df_06, df_07, df_08, df_09, df_10, df_11, df_12]
|
|
|
+ df_merged = pd.concat(df_list, axis=1)
|
|
|
+ df_select = df_merged.iloc[:, [0] + [3*i+2 for i in range(len(df_list))]]
|
|
|
+ df_select.to_csv("产品4_20241109_top1000-相关性-top{}.csv".format(rank_limit), index=False)
|
|
|
+
|
|
|
+
|
|
|
+
|