|
@@ -0,0 +1,95 @@
|
|
|
+# 对训练数据的分布进行监控
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+import datetime
|
|
|
+
|
|
|
+from config import set_config
|
|
|
+from rov_train import process_data, process_predict_data
|
|
|
+
|
|
|
+config_, env = set_config()
|
|
|
+
|
|
|
+
|
|
|
+def get_feature_distribution(feature_name, feature_data):
|
|
|
+ statistical_results = {'feature_name': feature_name}
|
|
|
+ feature_data = np.array(feature_data)
|
|
|
+ feature_data_sorted = sorted(feature_data)
|
|
|
+ length = len(feature_data_sorted)
|
|
|
+ count_0 = len([item for item in feature_data_sorted if item == 0])
|
|
|
+ print('data_count = {}, count_0 = {}, rate_0 = {}'.format(length, count_0, count_0/length))
|
|
|
+ statistical_results['data_count'] = length
|
|
|
+ statistical_results['0_count'] = count_0
|
|
|
+ statistical_results['0_rate'] = count_0/length
|
|
|
+
|
|
|
+ # 整体数据分布
|
|
|
+ for percentile in [0.25, 0.5, 0.75, 1]:
|
|
|
+ data_count = int(length * percentile)
|
|
|
+ data = feature_data_sorted[:data_count + 1]
|
|
|
+ data_mean = np.mean(data)
|
|
|
+ data_var = np.var(data)
|
|
|
+ data_std = np.std(data)
|
|
|
+ # print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
|
|
|
+ # percentile, data_count, data_mean, data_var, data_std))
|
|
|
+ statistical_results['mean_{}'.format(percentile)] = data_mean
|
|
|
+ statistical_results['var_{}'.format(percentile)] = data_var
|
|
|
+ statistical_results['std_{}'.format(percentile)] = data_std
|
|
|
+
|
|
|
+ # 非零数据分布
|
|
|
+ data_non_zero = [item for item in feature_data_sorted if item != 0]
|
|
|
+ for percentile in [0.25, 0.5, 0.75, 1]:
|
|
|
+ data_count = int(len(data_non_zero) * percentile)
|
|
|
+ data = data_non_zero[:data_count + 1]
|
|
|
+ data_mean = np.mean(data)
|
|
|
+ data_var = np.var(data)
|
|
|
+ dat_std = np.std(data)
|
|
|
+ # print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
|
|
|
+ # percentile, data_count, data_mean, data_var, dat_std))
|
|
|
+ statistical_results['non_zero_mean_{}'.format(percentile)] = data_mean
|
|
|
+ statistical_results['non_zero_var_{}'.format(percentile)] = data_var
|
|
|
+ statistical_results['non_zero_std_{}'.format(percentile)] = data_std
|
|
|
+
|
|
|
+ return statistical_results
|
|
|
+
|
|
|
+
|
|
|
+def all_feature_distribution(data, file):
|
|
|
+ res = []
|
|
|
+ columns = [
|
|
|
+ 'feature_name', 'data_count', '0_count', '0_rate',
|
|
|
+ 'mean_0.25', 'mean_0.5', 'mean_0.75', 'mean_1',
|
|
|
+ 'var_0.25', 'var_0.5', 'var_0.75', 'var_1',
|
|
|
+ 'std_0.25', 'std_0.5', 'std_0.75', 'std_1',
|
|
|
+ 'non_zero_mean_0.25', 'non_zero_mean_0.5', 'non_zero_mean_0.75', 'non_zero_mean_1',
|
|
|
+ 'non_zero_var_0.25', 'non_zero_var_0.5', 'non_zero_var_0.75', 'non_zero_var_1',
|
|
|
+ 'non_zero_std_0.25', 'non_zero_std_0.5', 'non_zero_std_0.75', 'non_zero_std_1'
|
|
|
+ ]
|
|
|
+ feature_importance = pd.read_csv('data/model_feature_importance.csv')
|
|
|
+ feature_name_list = list(feature_importance['feature'])
|
|
|
+ for feature_name in feature_name_list:
|
|
|
+ print(feature_name)
|
|
|
+ feature_data = data[feature_name]
|
|
|
+ statistical_results = get_feature_distribution(feature_name=feature_name, feature_data=feature_data)
|
|
|
+ res.append(statistical_results)
|
|
|
+ df = pd.DataFrame(res, columns=columns)
|
|
|
+ df.to_csv(file)
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+ now_date = datetime.datetime.strftime(datetime.datetime.today(), '%Y%m%d')
|
|
|
+ # now_date = '20220119'
|
|
|
+
|
|
|
+ # 训练数据
|
|
|
+ print('train data monitor...')
|
|
|
+ train_data_file = 'data/train_data_monitor_{}.csv'.format(now_date)
|
|
|
+ train_filename = config_.TRAIN_DATA_FILENAME
|
|
|
+ train_x, train_y, videos, fea = process_data(filename=train_filename)
|
|
|
+ all_feature_distribution(train_x, file=train_data_file)
|
|
|
+
|
|
|
+ # 预测数据
|
|
|
+ print('predict data monitor...')
|
|
|
+ predict_data_file = 'data/predict_data_monitor_{}.csv'.format(now_date)
|
|
|
+ predict_filename = config_.PREDICT_DATA_FILENAME
|
|
|
+ predict_x, video_ids = process_predict_data(filename=predict_filename)
|
|
|
+ all_feature_distribution(predict_x, file=predict_data_file)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ main()
|