1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- # 对训练数据的分布进行监控
- import numpy as np
- import pandas as pd
- import datetime
- from config import set_config
- from rov_train import process_data, process_predict_data
- config_, env = set_config()
- def get_feature_distribution(feature_name, feature_data):
- statistical_results = {'feature_name': feature_name}
- feature_data = np.array(feature_data)
- feature_data_sorted = sorted(feature_data)
- length = len(feature_data_sorted)
- count_0 = len([item for item in feature_data_sorted if item == 0])
- print('data_count = {}, count_0 = {}, rate_0 = {}'.format(length, count_0, count_0/length))
- statistical_results['data_count'] = length
- statistical_results['0_count'] = count_0
- statistical_results['0_rate'] = count_0/length
- # 整体数据分布
- for percentile in [0.25, 0.5, 0.75, 1]:
- data_count = int(length * percentile)
- data = feature_data_sorted[:data_count + 1]
- data_mean = np.mean(data)
- data_var = np.var(data)
- data_std = np.std(data)
- # print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
- # percentile, data_count, data_mean, data_var, data_std))
- statistical_results['mean_{}'.format(percentile)] = data_mean
- statistical_results['var_{}'.format(percentile)] = data_var
- statistical_results['std_{}'.format(percentile)] = data_std
- # 非零数据分布
- data_non_zero = [item for item in feature_data_sorted if item != 0]
- for percentile in [0.25, 0.5, 0.75, 1]:
- data_count = int(len(data_non_zero) * percentile)
- data = data_non_zero[:data_count + 1]
- data_mean = np.mean(data)
- data_var = np.var(data)
- dat_std = np.std(data)
- # print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
- # percentile, data_count, data_mean, data_var, dat_std))
- statistical_results['non_zero_mean_{}'.format(percentile)] = data_mean
- statistical_results['non_zero_var_{}'.format(percentile)] = data_var
- statistical_results['non_zero_std_{}'.format(percentile)] = data_std
- return statistical_results
- def all_feature_distribution(data, file):
- res = []
- columns = [
- 'feature_name', 'data_count', '0_count', '0_rate',
- 'mean_0.25', 'mean_0.5', 'mean_0.75', 'mean_1',
- 'var_0.25', 'var_0.5', 'var_0.75', 'var_1',
- 'std_0.25', 'std_0.5', 'std_0.75', 'std_1',
- 'non_zero_mean_0.25', 'non_zero_mean_0.5', 'non_zero_mean_0.75', 'non_zero_mean_1',
- 'non_zero_var_0.25', 'non_zero_var_0.5', 'non_zero_var_0.75', 'non_zero_var_1',
- 'non_zero_std_0.25', 'non_zero_std_0.5', 'non_zero_std_0.75', 'non_zero_std_1'
- ]
- feature_importance = pd.read_csv('data/model_feature_importance.csv')
- feature_name_list = list(feature_importance['feature'])
- for feature_name in feature_name_list:
- print(feature_name)
- feature_data = data[feature_name]
- statistical_results = get_feature_distribution(feature_name=feature_name, feature_data=feature_data)
- res.append(statistical_results)
- df = pd.DataFrame(res, columns=columns)
- df.to_csv(file)
- def main():
- now_date = datetime.datetime.strftime(datetime.datetime.today(), '%Y%m%d')
- # now_date = '20220119'
- # 训练数据
- print('train data monitor...')
- train_data_file = 'data/train_data_monitor_{}.csv'.format(now_date)
- train_filename = config_.TRAIN_DATA_FILENAME
- train_x, train_y, videos, fea = process_data(filename=train_filename)
- all_feature_distribution(train_x, file=train_data_file)
- # 预测数据
- print('predict data monitor...')
- predict_data_file = 'data/predict_data_monitor_{}.csv'.format(now_date)
- predict_filename = config_.PREDICT_DATA_FILENAME
- predict_x, video_ids = process_predict_data(filename=predict_filename)
- all_feature_distribution(predict_x, file=predict_data_file)
- if __name__ == '__main__':
- main()
|