|
@@ -24,7 +24,7 @@ def func_make_data(file_path: str):
|
|
|
'日期', '小时', 'rank',
|
|
|
'曝光量', '分享次数', '多层回流人数', 'return_rate', 'return_cnt',
|
|
|
'str', 'rosn', 'rovn', 'vovh24',
|
|
|
- 'score_552', 'score_562', 'score_567',
|
|
|
+ 'score_563', 'score_562', 'score_567',
|
|
|
'fmrov', 'hasreturnrovscore', 'vov_score_562', 'vov_score_567'
|
|
|
]:
|
|
|
df[col] = pd.to_numeric(df[col], errors='coerce')
|
|
@@ -34,6 +34,7 @@ def func_make_data(file_path: str):
|
|
|
else:
|
|
|
df[col] = df[col].astype(str)
|
|
|
df["score_552_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"])
|
|
|
+ df["score_563_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) + 0.1 * df["vov_score_563"]
|
|
|
df["score_562_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) * (1 + 1 * df["vov_score_562"])
|
|
|
df["score_567_offline"] = df["fmrov"] * (1 + df["hasreturnrovscore"]) + 0.05 * df["vov_score_567"]
|
|
|
df.fillna(0, inplace=True)
|
|
@@ -75,26 +76,26 @@ def func(df, rank_limit, col_a, col_b):
|
|
|
try:
|
|
|
date_train = sys.argv[1]
|
|
|
except Exception as e:
|
|
|
- date_train = "~/Downloads/20241109_top1000(1).csv"
|
|
|
+ date_train = "~/Downloads/20241115_top1000.csv"
|
|
|
df = func_make_data(date_train)
|
|
|
for rank_limit in [100, 500, 1000]:
|
|
|
print("date_train:rank_limit:{}-{}".format(date_train, rank_limit))
|
|
|
- df_01 = func(df, rank_limit, "vovh24", "score_552")
|
|
|
+ df_01 = func(df, rank_limit, "vovh24", "score_563")
|
|
|
df_02 = func(df, rank_limit, "vovh24", "score_562")
|
|
|
df_03 = func(df, rank_limit, "vovh24", "score_567")
|
|
|
- df_04 = func(df, rank_limit, "rovn", "score_552")
|
|
|
+ df_04 = func(df, rank_limit, "rovn", "score_563")
|
|
|
df_05 = func(df, rank_limit, "rovn", "score_562")
|
|
|
df_06 = func(df, rank_limit, "rovn", "score_567")
|
|
|
- df_07 = func(df, rank_limit, "vovh24", "score_552_offline")
|
|
|
+ df_07 = func(df, rank_limit, "vovh24", "score_563_offline")
|
|
|
df_08 = func(df, rank_limit, "vovh24", "score_562_offline")
|
|
|
df_09 = func(df, rank_limit, "vovh24", "score_567_offline")
|
|
|
- df_10 = func(df, rank_limit, "rovn", "score_552_offline")
|
|
|
+ df_10 = func(df, rank_limit, "rovn", "score_563_offline")
|
|
|
df_11 = func(df, rank_limit, "rovn", "score_562_offline")
|
|
|
df_12 = func(df, rank_limit, "rovn", "score_567_offline")
|
|
|
df_list = [df_01, df_02, df_03, df_04, df_05, df_06, df_07, df_08, df_09, df_10, df_11, df_12]
|
|
|
df_merged = pd.concat(df_list, axis=1)
|
|
|
df_select = df_merged.iloc[:, [0] + [3*i+2 for i in range(len(df_list))]]
|
|
|
- df_select.to_csv("产品4_20241109_top1000-相关性-top{}.csv".format(rank_limit), index=False)
|
|
|
+ df_select.to_csv("产品0_20241115_top1000-相关性-top{}.csv".format(rank_limit), index=False)
|
|
|
|
|
|
|
|
|
|