often пре 5 месеци
родитељ
комит
c89f3a9a0f
1 измењених фајлова са 5 додато и 1 уклоњено
  1. 5 1
      recommend-model-produce/src/main/python/models/dssm/net.py

+ 5 - 1
recommend-model-produce/src/main/python/models/dssm/net.py

@@ -100,6 +100,8 @@ class DSSMLayer(nn.Layer):
 
     def forward(self, left_features, right_features):
         # 获取两个视频的特征表示
+        paddle.static.Print(left_vec, message="lqc left model input shape:")
+        paddle.static.Print(right_vec, message="lqc right model input shape:")        
         left_vec, right_vec = self.get_vectors(left_features, right_features)
         paddle.static.Print(left_vec, message="lqc left model output shape:")
         paddle.static.Print(right_vec, message="lqc right model output shape:")
@@ -128,14 +130,16 @@ class DSSMLayer(nn.Layer):
         
         for i, layer in enumerate(self._left_tower):
             left_vec = layer(left_vec)
-            paddle.static.Print(left_vec, message=f"After layer {i}:")
+            paddle.static.Print(left_vec, message=f"After left layer {i}:")
         
         # 处理右视频特征
         right_embedded = self._process_features(right_features, self.right_embeddings)
         # right_vec = right_embedded
         right_vec = paddle.reshape(right_embedded, [-1, self.feature_num * self.embedding_dim])  
+        paddle.static.Print(right_vec, message=f"lqc lqc left_vec:")
         for layer in self._right_tower:
             right_vec = layer(right_vec)
+            paddle.static.Print(right_vec, message=f"After left layer {i}:")
             
         # 确保输出是L2归一化的
         left_vec = F.normalize(left_vec, p=2, axis=1)