|
@@ -91,7 +91,7 @@ class DSSMLayer(nn.Layer):
|
|
|
)
|
|
|
feature = paddle.cast(feature, dtype='int64')
|
|
|
embedded = embeddings[i](feature)
|
|
|
- paddle.static.Print(embedded, message="lqc debug _process_features embedded {i}:")
|
|
|
+
|
|
|
embedded_features.append(embedded)
|
|
|
|
|
|
# 将所有embedding连接起来
|
|
@@ -101,7 +101,8 @@ class DSSMLayer(nn.Layer):
|
|
|
def forward(self, left_features, right_features):
|
|
|
# 获取两个视频的特征表示
|
|
|
left_vec, right_vec = self.get_vectors(left_features, right_features)
|
|
|
-
|
|
|
+ paddle.static.Print(left_vec, message="lqc left model output shape:")
|
|
|
+ paddle.static.Print(right_vec, message="lqc right model output shape:")
|
|
|
# 计算相似度
|
|
|
sim_score = F.cosine_similarity(
|
|
|
left_vec,
|
|
@@ -116,7 +117,7 @@ class DSSMLayer(nn.Layer):
|
|
|
# 处理左视频特征
|
|
|
|
|
|
left_embedded = self._process_features(left_features, self.left_embeddings)
|
|
|
- paddle.static.Print(left_embedded, message="lqc left_embedded shape:")
|
|
|
+
|
|
|
# left_vec = left_embedded
|
|
|
left_vec = paddle.reshape(left_embedded, [-1, self.feature_num * self.embedding_dim])
|
|
|
|