|
@@ -1,107 +0,0 @@
|
|
|
-import os
|
|
|
-import sys
|
|
|
-import numpy as np
|
|
|
-import json
|
|
|
-from concurrent.futures import ThreadPoolExecutor
|
|
|
-from utils.oss_client import HangZhouOSSClient
|
|
|
-import utils.compress as compress
|
|
|
-from utils.my_hdfs_client import MyHDFSClient
|
|
|
-import paddle.inference as paddle_infer
|
|
|
-
|
|
|
-# Hadoop 安装目录和配置信息
|
|
|
-hadoop_home = "/app/env/hadoop-3.2.4"
|
|
|
-configs = {
|
|
|
- "fs.defaultFS": "hdfs://192.168.141.208:9000",
|
|
|
- "hadoop.job.ugi": ""
|
|
|
-}
|
|
|
-hdfs_client = MyHDFSClient(hadoop_home, configs)
|
|
|
-
|
|
|
-def download_and_extract_model(init_model_path, oss_client, oss_object_name):
|
|
|
- """下载并解压模型"""
|
|
|
- model_tar_path = "model.tar.gz"
|
|
|
- oss_client.get_object_to_file(oss_object_name, model_tar_path)
|
|
|
- compress.uncompress_tar(model_tar_path, init_model_path)
|
|
|
- assert os.path.exists(init_model_path)
|
|
|
-
|
|
|
-def create_paddle_predictor(model_file, params_file):
|
|
|
- """创建PaddlePaddle的predictor"""
|
|
|
- config = paddle_infer.Config(model_file, params_file)
|
|
|
- predictor = paddle_infer.create_predictor(config)
|
|
|
- return predictor
|
|
|
-
|
|
|
-def process_file(file_path, model_file, params_file):
|
|
|
- """处理单个文件"""
|
|
|
- predictor = create_paddle_predictor(model_file, params_file)
|
|
|
- ret, out = hdfs_client._run_cmd(f"text {file_path}")
|
|
|
- input_data = {}
|
|
|
- for line in out:
|
|
|
- sample_values = line.rstrip('\n').split('\t')
|
|
|
- vid, left_features_str = sample_values
|
|
|
- left_features = [float(x) for x in left_features_str.split(',')]
|
|
|
- input_data[vid] = left_features
|
|
|
-
|
|
|
- result = []
|
|
|
- for k, v in input_data.items():
|
|
|
- v2 = np.array([v], dtype=np.float32)
|
|
|
- input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
|
|
- input_handle.copy_from_cpu(v2)
|
|
|
- predictor.run()
|
|
|
- output_handle = predictor.get_output_handle(predictor.get_output_names()[0])
|
|
|
- output_data = output_handle.copy_to_cpu()
|
|
|
- result.append(k + "\t" + str(output_data.tolist()[0]))
|
|
|
- return result
|
|
|
-
|
|
|
-def write_results(results, output_file):
|
|
|
- """将结果写入文件"""
|
|
|
- with open(output_file, 'w') as json_file:
|
|
|
- for s in results:
|
|
|
- json_file.write(s + "\n")
|
|
|
-
|
|
|
-def thread_task(name, file_list, model_file, params_file):
|
|
|
- """线程任务"""
|
|
|
- print(f"Thread {name}: starting file_list:{file_list}")
|
|
|
- results = []
|
|
|
- i=0
|
|
|
- for file_path in file_list:
|
|
|
- i=i+1
|
|
|
- count=len(file_list)
|
|
|
- print(f"Thread {name}: starting file:{file_path} {i}/{count}")
|
|
|
- results.extend(process_file(file_path, model_file, params_file))
|
|
|
- file_name, file_suffix = os.path.splitext(os.path.basename(file_path))
|
|
|
- output_file = f"/app/vec-{file_name}.json"
|
|
|
- write_results(results, output_file)
|
|
|
- compress.compress_file_tar(output_file, f"{output_file}.tar.gz")
|
|
|
- hdfs_client.delete(f"/dyp/vec/{file_name}.gz")
|
|
|
- hdfs_client.upload(f"{output_file}.tar.gz", f"/dyp/vec/{file_name}.gz", multi_processes=1, overwrite=False)
|
|
|
- results=[]
|
|
|
- print(f"Thread {name}: ending file:{file_path} {i}/{count}")
|
|
|
-
|
|
|
- print(f"Thread {name}: finishing")
|
|
|
-
|
|
|
-def main():
|
|
|
- init_model_path = "/app/output_model_dssm"
|
|
|
- client = HangZhouOSSClient("art-recommend")
|
|
|
- oss_object_name = "dyp/dssm.tar.gz"
|
|
|
- download_and_extract_model(init_model_path, client, oss_object_name)
|
|
|
-
|
|
|
- model_file = os.path.join(init_model_path, "dssm.pdmodel")
|
|
|
- params_file = os.path.join(init_model_path, "dssm.pdiparams")
|
|
|
-
|
|
|
- max_workers = 2
|
|
|
-
|
|
|
- split_file_list = [
|
|
|
- ['/dw/recommend/model/56_dssm_i2i_itempredData/20241206/part-00017.gz'],
|
|
|
- ['/dw/recommend/model/56_dssm_i2i_itempredData/20241206/part-00018.gz']
|
|
|
- ]
|
|
|
- future_list = []
|
|
|
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
|
- for i, file_list in enumerate(split_file_list):
|
|
|
- future_list.append(executor.submit(thread_task, f"thread{i}", file_list, model_file, params_file))
|
|
|
-
|
|
|
- for future in future_list:
|
|
|
- future.result()
|
|
|
-
|
|
|
- print("Main program ending")
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- main()
|