123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- import os
- import sys
- __dir__ = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
- sys.path.append(os.path.join(__dir__,"tools"))
- import numpy as np
- import json
- from concurrent.futures import ThreadPoolExecutor
- from utils.oss_client import HangZhouOSSClient
- import utils.compress as compress
- from utils.my_hdfs_client import MyHDFSClient
- import paddle.inference as paddle_infer
- hadoop_home = "/app/env/hadoop-3.2.4"
- configs = {
- "fs.defaultFS": "hdfs://192.168.141.208:9000",
- "hadoop.job.ugi": ""
- }
- hdfs_client = MyHDFSClient(hadoop_home, configs)
- def download_and_extract_model(init_model_path, oss_client, oss_object_name):
- """下载并解压模型"""
- model_tar_path = "model.tar.gz"
- oss_client.get_object_to_file(oss_object_name, model_tar_path)
- compress.uncompress_tar(model_tar_path, init_model_path)
- assert os.path.exists(init_model_path)
- def create_paddle_predictor(model_file, params_file):
- """创建PaddlePaddle的predictor"""
- config = paddle_infer.Config(model_file, params_file)
- predictor = paddle_infer.create_predictor(config)
- return predictor
- def process_file(file_path, model_file, params_file):
- """处理单个文件"""
- predictor = create_paddle_predictor(model_file, params_file)
- ret, out = hdfs_client._run_cmd(f"text {file_path}")
- input_data = {}
- for line in out:
- sample_values = line.rstrip('\n').split('\t')
- vid, left_features_str = sample_values
- left_features = [float(x) for x in left_features_str.split(',')]
- input_data[vid] = left_features
- result = []
- for k, v in input_data.items():
- v2 = np.array([v], dtype=np.float32)
- input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
- input_handle.copy_from_cpu(v2)
- predictor.run()
- output_handle = predictor.get_output_handle(predictor.get_output_names()[0])
- output_data = output_handle.copy_to_cpu()
- result.append(k + "\t" + str(output_data.tolist()[0]))
- return result
- def write_results(results, output_file):
- """将结果写入文件"""
- with open(output_file, 'w') as json_file:
- for s in results:
- json_file.write(s + "\n")
- def thread_task(name, file_list, model_file, params_file):
- """线程任务"""
- print(f"Thread {name}: starting file_list:{file_list}")
- results = []
- i=0
- for file_path in file_list:
- i=i+1
- count=len(file_list)
- print(f"Thread {name}: starting file:{file_path} {i}/{count}")
- results.extend(process_file(file_path, model_file, params_file))
- file_name, file_suffix = os.path.splitext(os.path.basename(file_path))
- output_file = f"/app/vec-{file_name}.json"
- write_results(results, output_file)
- compress.compress_file_tar(output_file, f"{output_file}.tar.gz")
- hdfs_client.delete(f"/dyp/vec/{file_name}.gz")
- hdfs_client.upload(f"{output_file}.tar.gz", f"/dyp/vec/{file_name}.gz", multi_processes=1, overwrite=False)
- results=[]
- print(f"Thread {name}: ending file:{file_path} {i}/{count}")
-
- print(f"Thread {name}: finishing")
- def main():
- init_model_path = "/app/output_model_dssm"
- client = HangZhouOSSClient("art-recommend")
- oss_object_name = "dyp/dssm.tar.gz"
- download_and_extract_model(init_model_path, client, oss_object_name)
- model_file = os.path.join(init_model_path, "dssm.pdmodel")
- params_file = os.path.join(init_model_path, "dssm.pdiparams")
- sub_dirs,file_list = hdfs_client.ls_dir('/dw/recommend/model/56_dssm_i2i_itempredData/20241212')
- all_file=[]
- file_extensions=[".gz"]
- for file in file_list:
-
- if file_extensions and not any(file.endswith(ext) for ext in file_extensions):
- continue
- all_file.append(file)
- print(f"File list : {all_file}")
- max_workers = 16
- chunk_size = len(all_file) // max_workers
- remaining = len(all_file) % max_workers
-
- split_file_list = []
- for i in range(max_workers):
-
- start = i * chunk_size + min(i, remaining)
- end = start + chunk_size + (1 if i < remaining else 0)
-
- split_file_list.append(all_file[start:end])
- future_list = []
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
- for i, file_list in enumerate(split_file_list):
- future_list.append(executor.submit(thread_task, f"thread{i}", file_list, model_file, params_file))
- for future in future_list:
- future.result()
- print("Main program ending")
- if __name__ == "__main__":
- main()
|