02_ad_model_30d_v2_update.sh 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. #!/bin/sh
  2. set -x
  3. export PATH=$SPARK_HOME/bin:$PATH
  4. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  5. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  6. export PREDICT_CACHE_PATH=/root/fengzhoutian/xgboost-dev/predict_cache/
  7. export SEGMENT_BASE_PATH=/dw/recommend/model/36_model_attachment/score_calibration_file
  8. sh_path=$(cd $(dirname $0); pwd)
  9. source ${sh_path}/00_common.sh
  10. source /root/anaconda3/bin/activate py37
  11. # 全局常量
  12. LOG_PREFIX=广告模型训练任务
  13. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  14. TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v5
  15. BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v5
  16. TABLE=alg_recsys_ad_sample_all
  17. # 特征文件名
  18. feature_file=20240703_ad_feature_name.txt
  19. # 模型本地临时保存路径
  20. model_local_home=/root/fengzhoutian/xgboost-dev/
  21. # 模型HDFS保存路径,测试时修改为其他路径,避免影响线上
  22. MODEL_PATH=/dw/recommend/model/35_ad_model
  23. # 预测结果保存路径,测试时修改为其他路径,避免影响线上
  24. PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data
  25. # 模型OSS保存路径,测试时修改为其他路径,避免影响线上
  26. MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/fengzhoutian/
  27. # 线上模型名,测试时修改为其他模型名,避免影响线上
  28. model_name=model_xgb
  29. model_ver=351_1000_30d_v2
  30. model_name=${model_name}_${model_ver}
  31. model_local_home=${model_local_home}/${model_name}
  32. # 线上校准文件名
  33. OSS_CALIBRATION_FILE_NAME=${model_name}_calibration
  34. # 用于存放一些临时的文件
  35. PREDICT_CACHE_PATH=/root/fengzhoutian/xgboost-dev/predict_cache/
  36. # 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上
  37. model_path_file=${model_local_home}/online_model_path.txt
  38. # 获取当前是星期几,1表示星期一
  39. current_day_of_week="$(date +"%u")"
  40. # 任务开始时间
  41. start_time=$(date +%s)
  42. # 前一天
  43. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  44. # 线上模型在HDFS中的路径
  45. online_model_path=`cat ${model_path_file}`
  46. # 训练用的数据路径
  47. train_data_path=""
  48. # 评估用的数据路径
  49. predict_date_path=""
  50. #评估结果保存路径
  51. new_model_predict_result_path=""
  52. # 模型保存路径
  53. model_save_path=""
  54. # 评测结果保存路径,后续需要根据此文件评估是否要更新模型
  55. predict_analyse_file_path=""
  56. # 校准文件保存路径
  57. calibration_file_path=""
  58. # 保存模型评估的分析结果
  59. old_incr_rate_avg=0
  60. new_incr_rate_avg=0
  61. # Top10的详情
  62. top10_msg=""
  63. # AUC值
  64. old_auc=0
  65. new_auc=0
  66. declare -A real_score_map
  67. declare -A old_score_map
  68. declare -A new_score_map
  69. # 校验命令的退出码
  70. check_run_status() {
  71. local status=$1
  72. local step_start_time=$2
  73. local step_name=$3
  74. local msg=$4
  75. local step_end_time=$(date +%s)
  76. local step_elapsed=$(($step_end_time - $step_start_time))
  77. if [[ -n "${old_auc}" && "${old_auc}" != "0" ]]; then
  78. msg+="\n\t - 老模型AUC: ${old_auc}"
  79. fi
  80. if [[ -n "${new_auc}" && "${new_auc}" != "0" ]]; then
  81. msg+="\n\t - 新模型AUC: ${new_auc}"
  82. fi
  83. if [ ${status} -ne 0 ]; then
  84. echo "${LOG_PREFIX} -- ${step_name}失败: 耗时 ${step_elapsed}"
  85. local elapsed=$(($step_end_time - $start_time))
  86. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
  87. exit 1
  88. else
  89. echo "${LOG_PREFIX} -- ${step_name}成功: 耗时 ${step_elapsed}"
  90. fi
  91. }
  92. send_success_upload_msg(){
  93. # 发送更新成功通知
  94. local msg=" 广告模型文件更新完成"
  95. msg+="\n\t - 老模型AUC: ${old_auc}"
  96. msg+="\n\t - 新模型AUC: ${new_auc}"
  97. msg+="\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}"
  98. msg+="\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}"
  99. msg+="\n\t - 模型在HDFS中的路径: ${model_save_path}"
  100. msg+="\n\t - 模型上传OSS中的路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
  101. local step_end_time=$(date +%s)
  102. local elapsed=$((${step_end_time} - ${start_time}))
  103. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
  104. }
  105. init() {
  106. set +x
  107. declare -a date_keys=()
  108. local count=1
  109. local current_data="$(date -d "${today_early_1} -1 day" +%Y%m%d)"
  110. local train_data_days=28
  111. # 循环获取前 n 天的非节日日期
  112. while [[ ${count} -le $train_data_days ]]; do
  113. date_key=$(date -d "${current_data}" +%Y%m%d)
  114. # 判断是否是节日,并拼接训练数据路径
  115. if [ $(is_not_holidays ${date_key}) -eq 1 ]; then
  116. # 将 date_key 放入数组
  117. date_keys+=("${date_key}")
  118. if [[ -z ${train_data_path} ]]; then
  119. train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
  120. else
  121. train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
  122. fi
  123. count=$((count + 1))
  124. else
  125. echo "日期: ${date_key}是节日,跳过"
  126. fi
  127. current_data=$(date -d "${current_data} -1 day" +%Y%m%d)
  128. done
  129. last_index=$((${#date_keys[@]} - 1))
  130. train_first_day=${date_keys[$last_index]}
  131. train_last_day=${date_keys[0]}
  132. model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
  133. predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
  134. new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_${model_ver}_${train_first_day: -4}_${train_last_day: -4}
  135. online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_${model_ver}_${online_model_path: -9}
  136. predict_analyse_file_path=${model_local_home}/predict_analyse_file/${today_early_1}_${model_ver}_analyse.txt
  137. calibration_file_path=${model_local_home}/${OSS_CALIBRATION_FILE_NAME}.txt
  138. echo "init param train_data_path: ${train_data_path}"
  139. echo "init param predict_date_path: ${predict_date_path}"
  140. echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
  141. echo "init param online_model_predict_result_path: ${online_model_predict_result_path}"
  142. echo "init param model_save_path: ${model_save_path}"
  143. echo "init param online_model_path: ${online_model_path}"
  144. echo "init param feature_file: ${feature_file}"
  145. echo "init param model_name: ${model_name}"
  146. echo "init param model_local_home: ${model_local_home}"
  147. echo "init param model_oss_path: ${MODEL_OSS_PATH}"
  148. echo "init param predict_analyse_file_path: ${predict_analyse_file_path}"
  149. echo "init param calibration_file_path: ${calibration_file_path}"
  150. echo "init param current_day_of_week: ${current_day_of_week}"
  151. echo "当前Python环境安装的Python版本: $(python --version)"
  152. echo "当前Python环境安装的三方包: $(python -m pip list)"
  153. set -x
  154. }
  155. # 校验大数据任务是否执行完成
  156. check_ad_hive() {
  157. local step_start_time=$(date +%s)
  158. local max_hour=05
  159. local max_minute=30
  160. local elapsed=0
  161. while true; do
  162. local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
  163. elapsed=$(($(date +%s) - ${step_start_time}))
  164. if [ "${python_return_code}" -eq 0 ]; then
  165. break
  166. fi
  167. echo "Python程序返回非0值,等待五分钟后再次调用。"
  168. sleep 300
  169. local current_hour=$(date +%H)
  170. local current_minute=$(date +%M)
  171. if (( ${current_hour} > ${max_hour} || ( ${current_hour} == ${max_hour} && ${current_minute} >= ${max_minute} ) )); then
  172. local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
  173. echo -e "${LOG_PREFIX} -- 大数据数据生产校验 -- ${msg}: 耗时 ${elapsed}"
  174. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}"
  175. exit 1
  176. fi
  177. done
  178. echo "${LOG_PREFIX} -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 ${elapsed}"
  179. }
  180. origin_data() {
  181. (
  182. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  183. make_origin_data
  184. )
  185. }
  186. bucket_feature() {
  187. (
  188. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  189. make_bucket_feature
  190. )
  191. }
  192. xgb_train() {
  193. local step_start_time=$(date +%s)
  194. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  195. --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20250104 \
  196. --master yarn --driver-memory 6G --executor-memory 10G --executor-cores 2 --num-executors 11 \
  197. --conf spark.yarn.executor.memoryoverhead=2048 \
  198. --conf spark.shuffle.service.enabled=true \
  199. --conf spark.shuffle.service.port=7337 \
  200. --conf spark.shuffle.consolidateFiles=true \
  201. --conf spark.shuffle.manager=sort \
  202. --conf spark.storage.memoryFraction=0.4 \
  203. --conf spark.shuffle.memoryFraction=0.5 \
  204. --conf spark.default.parallelism=200 \
  205. /root/fengzhoutian/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  206. featureFile:20240703_ad_feature_name.txt \
  207. trainPath:${train_data_path} \
  208. testPath:${predict_date_path} \
  209. savePath:${new_model_predict_result_path} \
  210. modelPath:${model_save_path} \
  211. eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:10 repartition:20 \
  212. negSampleRate:0.01
  213. local return_code=$?
  214. check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败"
  215. }
  216. calc_model_predict() {
  217. local count=0
  218. local max_line=10
  219. local old_total_diff=0
  220. local new_total_diff=0
  221. top10_msg="| CID | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |"
  222. top10_msg+=" \n| ---- | --------- | -------- |"
  223. while read -r line && [ ${count} -lt ${max_line} ]; do
  224. # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
  225. if [[ "${line}" == *"cid"* ]]; then
  226. continue
  227. fi
  228. read -a numbers <<< "${line}"
  229. # 分数分别保存
  230. real_score_map[${numbers[0]}]=${numbers[3]}
  231. old_score_map[${numbers[0]}]=${numbers[6]}
  232. new_score_map[${numbers[0]}]=${numbers[7]}
  233. # 拼接Top10详情的飞书消息
  234. top10_msg="${top10_msg} \n| ${numbers[0]} | ${numbers[6]} | ${numbers[7]} | "
  235. # 计算top10相对误差绝对值的均值
  236. old_abs_score=$( echo "${numbers[6]} * ((${numbers[6]} >= 0) * 2 - 1)" | bc -l )
  237. new_abs_score=$( echo "${numbers[7]} * ((${numbers[7]} >= 0) * 2 - 1)" | bc -l )
  238. old_total_diff=$( echo "${old_total_diff} + ${old_abs_score}" | bc -l )
  239. new_total_diff=$( echo "${new_total_diff} + ${new_abs_score}" | bc -l )
  240. count=$((${count} + 1))
  241. done < "${predict_analyse_file_path}"
  242. local return_code=$?
  243. check_run_status ${return_code} ${step_start_time} "计算Top10差异" "计算Top10差异异常"
  244. old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
  245. check_run_status $? ${step_start_time} "计算老模型Top10差异" "计算老模型Top10差异异常"
  246. new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
  247. check_run_status $? ${step_start_time} "计算新模型Top10差异" "计算新模型Top10差异异常"
  248. echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
  249. echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
  250. echo "新老模型分数对比: "
  251. for cid in "${!new_score_map[@]}"; do
  252. echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}"
  253. done
  254. }
  255. calc_auc() {
  256. old_auc=`cat ${PREDICT_CACHE_PATH}/old_1.txt | /root/sunmingze/AUC/AUC`
  257. new_auc=`cat ${PREDICT_CACHE_PATH}/new_1.txt | /root/sunmingze/AUC/AUC`
  258. }
  259. model_predict() {
  260. # 线上模型评估最新的数据
  261. local step_start_time=$(date +%s)
  262. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  263. --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
  264. --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 30 \
  265. --conf spark.yarn.executor.memoryoverhead=1024 \
  266. --conf spark.shuffle.service.enabled=true \
  267. --conf spark.shuffle.service.port=7337 \
  268. --conf spark.shuffle.consolidateFiles=true \
  269. --conf spark.shuffle.manager=sort \
  270. --conf spark.storage.memoryFraction=0.4 \
  271. --conf spark.shuffle.memoryFraction=0.5 \
  272. --conf spark.default.parallelism=200 \
  273. /root/fengzhoutian/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  274. featureFile:20240703_ad_feature_name.txt \
  275. testPath:${predict_date_path} \
  276. savePath:${online_model_predict_result_path} \
  277. negSampleRate:0.01 \
  278. modelPath:${online_model_path}
  279. local return_code=$?
  280. check_run_status ${return_code} ${step_start_time} "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败"
  281. }
  282. compare_predictions() {
  283. local step_start_time=$(date +%s)
  284. # 结果分析
  285. python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path}
  286. local python_return_code=$?
  287. check_run_status ${python_return_code} ${step_start_time} "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败"
  288. calc_model_predict
  289. calc_auc
  290. if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then
  291. echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  292. check_run_status 1 ${step_start_time} "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  293. exit 1
  294. fi
  295. # 对比两个模型的差异
  296. score_diff=$( echo "${new_incr_rate_avg} - ${old_incr_rate_avg}" | bc -l )
  297. if (( $(echo "${score_diff} > 0.050000" | bc -l ) ));then
  298. echo "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查"
  299. check_run_status 1 ${step_start_time} "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05"
  300. exit 1
  301. fi
  302. }
  303. draw_q_distribution() {
  304. local step_start_time=$(date +%s)
  305. python ${sh_path}/draw_predict_distribution.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} --output ${today_early_1}_${model_ver}_${train_first_day: -4}_${train_last_day: -4}.png
  306. python_return_code=$?
  307. }
  308. model_upload_oss() {
  309. local step_start_time=$(date +%s)
  310. (
  311. cd ${model_local_home}
  312. ${HADOOP} fs -get ${model_save_path} ${model_name}
  313. if [ ! -d ${model_name} ]; then
  314. echo "从HDFS下载模型失败"
  315. check_run_status 1 ${step_start_time} "HDFS下载模型任务" "HDFS下载模型失败"
  316. exit 1
  317. fi
  318. tar -czvf ${model_name}.tar.gz -C ${model_name} .
  319. rm -rf ${model_name}.tar.gz.crc
  320. # 从OSS中移除模型文件和校准文件
  321. ${HADOOP} fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz ${MODEL_OSS_PATH}/${OSS_CALIBRATION_FILE_NAME}.txt
  322. # 将模型文件和校准文件推送到OSS上
  323. ${HADOOP} fs -put ${model_name}.tar.gz ${OSS_CALIBRATION_FILE_NAME}.txt ${MODEL_OSS_PATH}
  324. local return_code=$?
  325. check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
  326. echo ${model_save_path} > ${model_path_file}
  327. #
  328. rm -f ./${model_name}.tar.gz
  329. rm -rf ./${model_name}
  330. rm -rf ${OSS_CALIBRATION_FILE_NAME}.txt
  331. )
  332. local return_code=$?
  333. check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
  334. local step_end_time=$(date +%s)
  335. local elapsed=$((${step_end_time} - ${start_time}))
  336. echo -e "${LOG_PREFIX} -- 模型更新完成 -- 模型更新成功: 耗时 ${elapsed}"
  337. send_success_upload_msg
  338. }
  339. get_feature_score() {
  340. # 线上模型评估最新的数据
  341. local step_start_time=$(date +%s)
  342. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  343. --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
  344. --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 3 \
  345. --conf spark.yarn.executor.memoryoverhead=1024 \
  346. --conf spark.shuffle.service.enabled=true \
  347. --conf spark.shuffle.service.port=7337 \
  348. --conf spark.shuffle.consolidateFiles=true \
  349. --conf spark.shuffle.manager=sort \
  350. --conf spark.storage.memoryFraction=0.4 \
  351. --conf spark.shuffle.memoryFraction=0.5 \
  352. --conf spark.default.parallelism=200 \
  353. /root/fengzhoutian/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  354. featureFile:20240703_ad_feature_name.txt \
  355. saveFeatureScoresOnly:true \
  356. savePath:"/dw/recommend/model/37_model_feature_scores/${model_name}" \
  357. modelPath:"/dw/recommend/model/35_ad_model/${model_name}"
  358. }
  359. make_data() {
  360. origin_data
  361. bucket_feature
  362. }
  363. # 主方法
  364. main() {
  365. init
  366. check_ad_hive
  367. make_data
  368. if [ "${current_day_of_week}" -eq 1 ] || [ "${current_day_of_week}" -eq 3 ] || [ "${current_day_of_week}" -eq 5 ]; then
  369. echo "当前是周一,周三或周五,开始训练并更新模型"
  370. xgb_train
  371. model_predict
  372. # get_feature_score
  373. compare_predictions
  374. draw_q_distribution
  375. model_upload_oss
  376. else
  377. echo "当前是周一,周三或周五,不更新模型"
  378. fi
  379. }
  380. main