#!/bin/sh set -x export PATH=$SPARK_HOME/bin:$PATH export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf export JAVA_HOME=/usr/lib/jvm/java-1.8.0 export PREDICT_CACHE_PATH=/root/fengzhoutian/xgboost-dev/predict_cache/ export SEGMENT_BASE_PATH=/dw/recommend/model/36_model_attachment/score_calibration_file sh_path=$(cd $(dirname $0); pwd) source ${sh_path}/00_common.sh source /root/anaconda3/bin/activate py37 # 全局常量 LOG_PREFIX=广告模型训练任务 HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v5 BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v5 TABLE=alg_recsys_ad_sample_all # 特征文件名 feature_file=20240703_ad_feature_name.txt # 模型本地临时保存路径 model_local_home=/root/fengzhoutian/xgboost-dev/ # 模型HDFS保存路径,测试时修改为其他路径,避免影响线上 MODEL_PATH=/dw/recommend/model/35_ad_model # 预测结果保存路径,测试时修改为其他路径,避免影响线上 PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data # 模型OSS保存路径,测试时修改为其他路径,避免影响线上 MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/fengzhoutian/ # 线上模型名,测试时修改为其他模型名,避免影响线上 model_name=model_xgb model_ver=351_1000_30d_v2 model_name=${model_name}_${model_ver} model_local_home=${model_local_home}/${model_name} # 线上校准文件名 OSS_CALIBRATION_FILE_NAME=${model_name}_calibration # 用于存放一些临时的文件 PREDICT_CACHE_PATH=/root/fengzhoutian/xgboost-dev/predict_cache/ # 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上 model_path_file=${model_local_home}/online_model_path.txt # 获取当前是星期几,1表示星期一 current_day_of_week="$(date +"%u")" # 任务开始时间 start_time=$(date +%s) # 前一天 today_early_1="$(date -d '1 days ago' +%Y%m%d)" # 线上模型在HDFS中的路径 online_model_path=`cat ${model_path_file}` # 训练用的数据路径 train_data_path="" # 评估用的数据路径 predict_date_path="" #评估结果保存路径 new_model_predict_result_path="" # 模型保存路径 model_save_path="" # 评测结果保存路径,后续需要根据此文件评估是否要更新模型 predict_analyse_file_path="" # 校准文件保存路径 calibration_file_path="" # 保存模型评估的分析结果 old_incr_rate_avg=0 new_incr_rate_avg=0 # Top10的详情 top10_msg="" # AUC值 old_auc=0 new_auc=0 declare -A real_score_map declare -A old_score_map declare -A new_score_map # 校验命令的退出码 check_run_status() { local status=$1 local step_start_time=$2 local step_name=$3 local msg=$4 local step_end_time=$(date +%s) local step_elapsed=$(($step_end_time - $step_start_time)) if [[ -n "${old_auc}" && "${old_auc}" != "0" ]]; then msg+="\n\t - 老模型AUC: ${old_auc}" fi if [[ -n "${new_auc}" && "${new_auc}" != "0" ]]; then msg+="\n\t - 新模型AUC: ${new_auc}" fi if [ ${status} -ne 0 ]; then echo "${LOG_PREFIX} -- ${step_name}失败: 耗时 ${step_elapsed}" local elapsed=$(($step_end_time - $start_time)) /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}" exit 1 else echo "${LOG_PREFIX} -- ${step_name}成功: 耗时 ${step_elapsed}" fi } send_success_upload_msg(){ # 发送更新成功通知 local msg=" 广告模型文件更新完成" msg+="\n\t - 老模型AUC: ${old_auc}" msg+="\n\t - 新模型AUC: ${new_auc}" msg+="\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}" msg+="\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}" msg+="\n\t - 模型在HDFS中的路径: ${model_save_path}" msg+="\n\t - 模型上传OSS中的路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz" local step_end_time=$(date +%s) local elapsed=$((${step_end_time} - ${start_time})) /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}" } init() { set +x declare -a date_keys=() local count=1 local current_data="$(date -d "${today_early_1} -1 day" +%Y%m%d)" local train_data_days=28 # 循环获取前 n 天的非节日日期 while [[ ${count} -le $train_data_days ]]; do date_key=$(date -d "${current_data}" +%Y%m%d) # 判断是否是节日,并拼接训练数据路径 if [ $(is_not_holidays ${date_key}) -eq 1 ]; then # 将 date_key 放入数组 date_keys+=("${date_key}") if [[ -z ${train_data_path} ]]; then train_data_path="${BUCKET_FEATURE_PATH}/${date_key}" else train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}" fi count=$((count + 1)) else echo "日期: ${date_key}是节日,跳过" fi current_data=$(date -d "${current_data} -1 day" +%Y%m%d) done last_index=$((${#date_keys[@]} - 1)) train_first_day=${date_keys[$last_index]} train_last_day=${date_keys[0]} model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4} predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1} new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_${model_ver}_${train_first_day: -4}_${train_last_day: -4} online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_${model_ver}_${online_model_path: -9} predict_analyse_file_path=${model_local_home}/predict_analyse_file/${today_early_1}_${model_ver}_analyse.txt calibration_file_path=${model_local_home}/${OSS_CALIBRATION_FILE_NAME}.txt echo "init param train_data_path: ${train_data_path}" echo "init param predict_date_path: ${predict_date_path}" echo "init param new_model_predict_result_path: ${new_model_predict_result_path}" echo "init param online_model_predict_result_path: ${online_model_predict_result_path}" echo "init param model_save_path: ${model_save_path}" echo "init param online_model_path: ${online_model_path}" echo "init param feature_file: ${feature_file}" echo "init param model_name: ${model_name}" echo "init param model_local_home: ${model_local_home}" echo "init param model_oss_path: ${MODEL_OSS_PATH}" echo "init param predict_analyse_file_path: ${predict_analyse_file_path}" echo "init param calibration_file_path: ${calibration_file_path}" echo "init param current_day_of_week: ${current_day_of_week}" echo "当前Python环境安装的Python版本: $(python --version)" echo "当前Python环境安装的三方包: $(python -m pip list)" set -x } # 校验大数据任务是否执行完成 check_ad_hive() { local step_start_time=$(date +%s) local max_hour=05 local max_minute=30 local elapsed=0 while true; do local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23) elapsed=$(($(date +%s) - ${step_start_time})) if [ "${python_return_code}" -eq 0 ]; then break fi echo "Python程序返回非0值,等待五分钟后再次调用。" sleep 300 local current_hour=$(date +%H) local current_minute=$(date +%M) if (( ${current_hour} > ${max_hour} || ( ${current_hour} == ${max_hour} && ${current_minute} >= ${max_minute} ) )); then local msg="大数据数据生产校验失败, 分区: ${today_early_1}" echo -e "${LOG_PREFIX} -- 大数据数据生产校验 -- ${msg}: 耗时 ${elapsed}" /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" exit 1 fi done echo "${LOG_PREFIX} -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 ${elapsed}" } origin_data() { ( source ${sh_path}/25_xgb_make_data_origin_bucket.sh make_origin_data ) } bucket_feature() { ( source ${sh_path}/25_xgb_make_data_origin_bucket.sh make_bucket_feature ) } xgb_train() { local step_start_time=$(date +%s) /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \ --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20250104 \ --master yarn --driver-memory 6G --executor-memory 10G --executor-cores 2 --num-executors 11 \ --conf spark.yarn.executor.memoryoverhead=2048 \ --conf spark.shuffle.service.enabled=true \ --conf spark.shuffle.service.port=7337 \ --conf spark.shuffle.consolidateFiles=true \ --conf spark.shuffle.manager=sort \ --conf spark.storage.memoryFraction=0.4 \ --conf spark.shuffle.memoryFraction=0.5 \ --conf spark.default.parallelism=200 \ /root/fengzhoutian/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \ featureFile:20240703_ad_feature_name.txt \ trainPath:${train_data_path} \ testPath:${predict_date_path} \ savePath:${new_model_predict_result_path} \ modelPath:${model_save_path} \ eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:10 repartition:20 \ negSampleRate:0.01 local return_code=$? check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败" } calc_model_predict() { local count=0 local max_line=10 local old_total_diff=0 local new_total_diff=0 top10_msg="| CID | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |" top10_msg+=" \n| ---- | --------- | -------- |" while read -r line && [ ${count} -lt ${max_line} ]; do # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑 if [[ "${line}" == *"cid"* ]]; then continue fi read -a numbers <<< "${line}" # 分数分别保存 real_score_map[${numbers[0]}]=${numbers[3]} old_score_map[${numbers[0]}]=${numbers[6]} new_score_map[${numbers[0]}]=${numbers[7]} # 拼接Top10详情的飞书消息 top10_msg="${top10_msg} \n| ${numbers[0]} | ${numbers[6]} | ${numbers[7]} | " # 计算top10相对误差绝对值的均值 old_abs_score=$( echo "${numbers[6]} * ((${numbers[6]} >= 0) * 2 - 1)" | bc -l ) new_abs_score=$( echo "${numbers[7]} * ((${numbers[7]} >= 0) * 2 - 1)" | bc -l ) old_total_diff=$( echo "${old_total_diff} + ${old_abs_score}" | bc -l ) new_total_diff=$( echo "${new_total_diff} + ${new_abs_score}" | bc -l ) count=$((${count} + 1)) done < "${predict_analyse_file_path}" local return_code=$? check_run_status ${return_code} ${step_start_time} "计算Top10差异" "计算Top10差异异常" old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l ) check_run_status $? ${step_start_time} "计算老模型Top10差异" "计算老模型Top10差异异常" new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l ) check_run_status $? ${step_start_time} "计算新模型Top10差异" "计算新模型Top10差异异常" echo "老模型Top10差异平均值: ${old_incr_rate_avg}" echo "新模型Top10差异平均值: ${new_incr_rate_avg}" echo "新老模型分数对比: " for cid in "${!new_score_map[@]}"; do echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}" done } calc_auc() { old_auc=`cat ${PREDICT_CACHE_PATH}/old_1.txt | /root/sunmingze/AUC/AUC` new_auc=`cat ${PREDICT_CACHE_PATH}/new_1.txt | /root/sunmingze/AUC/AUC` } model_predict() { # 线上模型评估最新的数据 local step_start_time=$(date +%s) /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \ --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \ --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 30 \ --conf spark.yarn.executor.memoryoverhead=1024 \ --conf spark.shuffle.service.enabled=true \ --conf spark.shuffle.service.port=7337 \ --conf spark.shuffle.consolidateFiles=true \ --conf spark.shuffle.manager=sort \ --conf spark.storage.memoryFraction=0.4 \ --conf spark.shuffle.memoryFraction=0.5 \ --conf spark.default.parallelism=200 \ /root/fengzhoutian/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \ featureFile:20240703_ad_feature_name.txt \ testPath:${predict_date_path} \ savePath:${online_model_predict_result_path} \ negSampleRate:0.01 \ modelPath:${online_model_path} local return_code=$? check_run_status ${return_code} ${step_start_time} "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败" } compare_predictions() { local step_start_time=$(date +%s) # 结果分析 python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path} local python_return_code=$? check_run_status ${python_return_code} ${step_start_time} "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败" calc_model_predict calc_auc if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查" check_run_status 1 ${step_start_time} "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查" exit 1 fi # 对比两个模型的差异 score_diff=$( echo "${new_incr_rate_avg} - ${old_incr_rate_avg}" | bc -l ) if (( $(echo "${score_diff} > 0.050000" | bc -l ) ));then echo "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查" check_run_status 1 ${step_start_time} "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05" exit 1 fi } draw_q_distribution() { local step_start_time=$(date +%s) python ${sh_path}/draw_predict_distribution.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} --output ${today_early_1}_${model_ver}_${train_first_day: -4}_${train_last_day: -4}.png python_return_code=$? } model_upload_oss() { local step_start_time=$(date +%s) ( cd ${model_local_home} ${HADOOP} fs -get ${model_save_path} ${model_name} if [ ! -d ${model_name} ]; then echo "从HDFS下载模型失败" check_run_status 1 ${step_start_time} "HDFS下载模型任务" "HDFS下载模型失败" exit 1 fi tar -czvf ${model_name}.tar.gz -C ${model_name} . rm -rf ${model_name}.tar.gz.crc # 从OSS中移除模型文件和校准文件 ${HADOOP} fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz ${MODEL_OSS_PATH}/${OSS_CALIBRATION_FILE_NAME}.txt # 将模型文件和校准文件推送到OSS上 ${HADOOP} fs -put ${model_name}.tar.gz ${OSS_CALIBRATION_FILE_NAME}.txt ${MODEL_OSS_PATH} local return_code=$? check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败" echo ${model_save_path} > ${model_path_file} # rm -f ./${model_name}.tar.gz rm -rf ./${model_name} rm -rf ${OSS_CALIBRATION_FILE_NAME}.txt ) local return_code=$? check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败" local step_end_time=$(date +%s) local elapsed=$((${step_end_time} - ${start_time})) echo -e "${LOG_PREFIX} -- 模型更新完成 -- 模型更新成功: 耗时 ${elapsed}" send_success_upload_msg } get_feature_score() { # 线上模型评估最新的数据 local step_start_time=$(date +%s) /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \ --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \ --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 3 \ --conf spark.yarn.executor.memoryoverhead=1024 \ --conf spark.shuffle.service.enabled=true \ --conf spark.shuffle.service.port=7337 \ --conf spark.shuffle.consolidateFiles=true \ --conf spark.shuffle.manager=sort \ --conf spark.storage.memoryFraction=0.4 \ --conf spark.shuffle.memoryFraction=0.5 \ --conf spark.default.parallelism=200 \ /root/fengzhoutian/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \ featureFile:20240703_ad_feature_name.txt \ saveFeatureScoresOnly:true \ savePath:"/dw/recommend/model/37_model_feature_scores/${model_name}" \ modelPath:"/dw/recommend/model/35_ad_model/${model_name}" } make_data() { origin_data bucket_feature } # 主方法 main() { init check_ad_hive make_data if [ "${current_day_of_week}" -eq 1 ] || [ "${current_day_of_week}" -eq 3 ] || [ "${current_day_of_week}" -eq 5 ]; then echo "当前是周一,周三或周五,开始训练并更新模型" xgb_train model_predict # get_feature_score compare_predictions draw_q_distribution model_upload_oss else echo "当前是周一,周三或周五,不更新模型" fi } main