check_auc.sh 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. #!/bin/sh
  2. set -ex
  3. source /root/anaconda3/bin/activate py37
  4. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  5. # 原始数据table name
  6. table='alg_recsys_sample_all'
  7. today="$(date +%Y%m%d)"
  8. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  9. #table='alg_recsys_sample_all_test'
  10. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  11. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  12. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  13. beginHhStr=00
  14. endHhStr=23
  15. max_hour=05
  16. max_minute=00
  17. # 各节点产出hdfs文件绝对路径
  18. # 源数据文件
  19. originDataPath=/dw/recommend/model/13_sample_data/
  20. # 特征值
  21. valueDataPath=/dw/recommend/model/14_feature_data/
  22. # 特征分桶
  23. bucketDataPath=/dw/recommend/model/16_train_data/
  24. # 模型数据路径
  25. MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
  26. # 预测路径
  27. PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
  28. # 历史线上正在使用的模型数据路径
  29. LAST_MODEL_HOME=/root/joe/model_online
  30. # 模型数据文件前缀
  31. model_name=akaqjl8
  32. # fm模型
  33. FM_HOME=/root/sunmingze/alphaFM/bin
  34. # hadoop
  35. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  36. 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
  37. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
  38. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  39. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  40. $HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  41. $HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  42. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  43. if [ $? -ne 0 ]; then
  44. echo "推荐线上模型AUC计算失败"
  45. # /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败"
  46. exit 1
  47. fi
  48. new_auc=`${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  49. if [ $? -ne 0 ]; then
  50. echo "推荐新模型AUC计算失败"
  51. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败"
  52. exit 1
  53. fi
  54. # 1 对比auc数据判断是否更新线上模型
  55. if [ "$online_auc" \< "$new_auc" ]; then
  56. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  57. # todo 模型格式转换
  58. # todo 模型文件上传OSS
  59. # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
  60. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  61. else
  62. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  63. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  64. fi