#!/bin/sh set -ex source /root/anaconda3/bin/activate py37 # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 & # 原始数据table name table='alg_recsys_sample_all' today="$(date +%Y%m%d)" today_early_3="$(date -d '3 days ago' +%Y%m%d)" #table='alg_recsys_sample_all_test' # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据 begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" beginHhStr=00 endHhStr=23 max_hour=05 max_minute=00 # 各节点产出hdfs文件绝对路径 # 源数据文件 originDataPath=/dw/recommend/model/13_sample_data/ # 特征值 valueDataPath=/dw/recommend/model/14_feature_data/ # 特征分桶 bucketDataPath=/dw/recommend/model/16_train_data/ # 模型数据路径 MODEL_PATH=/root/joe/recommend-emr-dataprocess/model # 预测路径 PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict # 历史线上正在使用的模型数据路径 LAST_MODEL_HOME=/root/joe/model_online # 模型数据文件前缀 model_name=akaqjl8 # fm模型 FM_HOME=/root/sunmingze/alphaFM/bin # hadoop HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果" #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt $HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt $HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC` if [ $? -ne 0 ]; then echo "推荐线上模型AUC计算失败" # /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败" exit 1 fi new_auc=`${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC` if [ $? -ne 0 ]; then echo "推荐新模型AUC计算失败" # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败" exit 1 fi # 1 对比auc数据判断是否更新线上模型 if [ "$online_auc" \< "$new_auc" ]; then echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" # todo 模型格式转换 # todo 模型文件上传OSS # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证 # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" else echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" fi