01_ad_model_update_everyday.sh 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. LAST_MODEL_HOME=/root/zhaohp/model_online
  10. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  11. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  12. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  13. FM_HOME=/root/sunmingze/alphaFM
  14. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  15. max_hour=17
  16. max_minute=00
  17. OSS_ONLINE_MODEL_PATH=${OSS_PATH}/${model_name}.txt
  18. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  19. export PATH=$SPARK_HOME/bin:$PATH
  20. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  21. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  22. # 1 判断依赖的数据表是否生产完成
  23. source /root/anaconda3/bin/activate py37
  24. while true; do
  25. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  26. if [ $python_return_code -eq 0 ]; then
  27. echo "Python程序返回0,退出循环。"
  28. break
  29. fi
  30. echo "Python程序返回非0值,等待五分钟后再次调用。"
  31. sleep 300
  32. current_hour=$(date +%H)
  33. current_minute=$(date +%M)
  34. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  35. echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  36. msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
  37. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  38. exit 1
  39. fi
  40. done
  41. # 2 原始特征生成
  42. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  43. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  44. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  45. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  46. tablePart:64 repartition:16 \
  47. beginStr:${today_early_1}00 endStr:${today}10 \
  48. savePath:${originDataSavePath} \
  49. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  50. idDefaultValue:0.01
  51. if [ $? -ne 0 ]; then
  52. echo "Spark原始样本生产任务执行失败"
  53. msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
  54. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  55. exit 1
  56. else
  57. echo "spark原始样本生产执行成功"
  58. fi
  59. # 3 特征分桶
  60. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  61. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  62. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  63. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  64. beginStr:${today_early_1} endStr:${today} repartition:100 \
  65. filterNames:adid_,targeting_conversion_ \
  66. readPath:${originDataSavePath} \
  67. savePath:${bucketFeatureSavePath}
  68. if [ $? -ne 0 ]; then
  69. echo "Spark特征分桶处理任务执行失败"
  70. msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
  71. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  72. exit 1
  73. else
  74. echo "spark特征分桶处理执行成功"
  75. fi
  76. # 4 模型训练
  77. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  78. if [ $? -ne 0 ]; then
  79. echo "模型训练失败"
  80. /root/anaconda3/bin/python ad/ad_monitor_util.py "广告模型训练失败"
  81. exit 1
  82. fi
  83. # 5 对比AUC
  84. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  85. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  86. # 5.1 计算线上模型的AUC
  87. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  88. if [ $? -ne 0 ]; then
  89. echo "线上模型AUC计算失败"
  90. /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败"
  91. exit 1
  92. fi
  93. # 5.2 计算新模型的AUC
  94. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  95. if [ $? -ne 0 ]; then
  96. echo "新模型AUC计算失败"
  97. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败"
  98. exit 1
  99. fi
  100. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  101. # 5.3 计算新模型与线上模型的AUC差值
  102. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  103. # 5.4 获取差值的绝对值
  104. auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  105. # 5.5 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  106. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  107. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  108. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  109. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  110. echo "新模型与线上模型差值小于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  111. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型与线上模型差值小于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  112. else
  113. echo "新模型与线上模型差值大于等于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  114. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型与线上模型差值大于等于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  115. exit 1
  116. fi
  117. # 6 模型格式转换
  118. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  119. awk -F " " '{
  120. if (NR == 1) {
  121. print $1"\t"$2
  122. } else {
  123. split($0, fields, " ");
  124. OFS="\t";
  125. line=""
  126. for (i = 1; i <= 10 && i <= length(fields); i++) {
  127. line = (line ? line "\t" : "") fields[i];
  128. }
  129. print line
  130. }
  131. }' > ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  132. if [ $? -ne 0 ]; then
  133. echo "新模型文件格式转换失败"
  134. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型文件格式转换失败"
  135. exit 1
  136. fi
  137. # 7 模型文件上传OSS
  138. online_model_path=${OSS_PATH}/${model_name}.txt
  139. $HADOOP fs -test -e ${online_model_path}
  140. if [ $? -eq 0 ]; then
  141. echo "数据存在, 先删除。"
  142. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  143. else
  144. echo "数据不存在"
  145. fi
  146. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  147. if [ $? -eq 0 ]; then
  148. echo "推荐模型文件至OSS成功"
  149. else
  150. echo "推荐模型文件至OSS失败"
  151. /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败"
  152. exit 1
  153. fi
  154. # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  155. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  156. cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  157. if [ $? -ne 0 ]; then
  158. echo "模型备份失败"
  159. /root/anaconda3/bin/python ad/ad_monitor_util.py "模型备份失败 - 最新模型地址: ${MODEL_PATH}/${model_name}_${today_early_1}.txt"
  160. exit 1
  161. fi
  162. # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1