#!/bin/sh set -x # 0 全局变量/参数 originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/ bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/ model_name=model_bkb8_v3 today="$(date +%Y%m%d)" today_early_1="$(date -d '1 days ago' +%Y%m%d)" LAST_MODEL_HOME=/root/zhaohp/model_online MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop FM_HOME=/root/sunmingze/alphaFM OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/ max_hour=17 max_minute=00 OSS_ONLINE_MODEL_PATH=${OSS_PATH}/${model_name}.txt export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8 export PATH=$SPARK_HOME/bin:$PATH export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf export JAVA_HOME=/usr/lib/jvm/java-1.8.0 # 1 判断依赖的数据表是否生产完成 source /root/anaconda3/bin/activate py37 while true; do python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10) if [ $python_return_code -eq 0 ]; then echo "Python程序返回0,退出循环。" break fi echo "Python程序返回非0值,等待五分钟后再次调用。" sleep 300 current_hour=$(date +%H) current_minute=$(date +%M) if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then echo "最长等待时间已到,失败:${current_hour}-${current_minute}" msg="广告特征数据校验失败,大数据分区没有数据: ${today}10" /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} exit 1 fi done # 2 原始特征生成 /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \ --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ tablePart:64 repartition:16 \ beginStr:${today_early_1}00 endStr:${today}10 \ savePath:${originDataSavePath} \ table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \ idDefaultValue:0.01 if [ $? -ne 0 ]; then echo "Spark原始样本生产任务执行失败" msg="广告特征数据生成失败,Spark原始样本生产任务执行失败" /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} exit 1 else echo "spark原始样本生产执行成功" fi # 3 特征分桶 /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ beginStr:${today_early_1} endStr:${today} repartition:100 \ filterNames:adid_,targeting_conversion_ \ readPath:${originDataSavePath} \ savePath:${bucketFeatureSavePath} if [ $? -ne 0 ]; then echo "Spark特征分桶处理任务执行失败" msg="广告特征分桶失败,Spark特征分桶处理任务执行失败" /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} exit 1 else echo "spark特征分桶处理执行成功" fi # 4 模型训练 $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8 if [ $? -ne 0 ]; then echo "模型训练失败" /root/anaconda3/bin/python ad/ad_monitor_util.py "广告模型训练失败" exit 1 fi # 5 对比AUC $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt # 5.1 计算线上模型的AUC online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC` if [ $? -ne 0 ]; then echo "线上模型AUC计算失败" /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败" exit 1 fi # 5.2 计算新模型的AUC new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC` if [ $? -ne 0 ]; then echo "新模型AUC计算失败" /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败" exit 1 fi echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}" # 5.3 计算新模型与线上模型的AUC差值 auc_diff=$(echo "$online_auc - $new_auc" | bc -l) # 5.4 获取差值的绝对值 auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l) # 5.5 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型 if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then echo "新模型与线上模型差值小于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs" /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型与线上模型差值小于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs" else echo "新模型与线上模型差值大于等于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs" /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型与线上模型差值大于等于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs" exit 1 fi # 6 模型格式转换 cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt | awk -F " " '{ if (NR == 1) { print $1"\t"$2 } else { split($0, fields, " "); OFS="\t"; line="" for (i = 1; i <= 10 && i <= length(fields); i++) { line = (line ? line "\t" : "") fields[i]; } print line } }' > ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt if [ $? -ne 0 ]; then echo "新模型文件格式转换失败" /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型文件格式转换失败" exit 1 fi # 7 模型文件上传OSS online_model_path=${OSS_PATH}/${model_name}.txt $HADOOP fs -test -e ${online_model_path} if [ $? -eq 0 ]; then echo "数据存在, 先删除。" $HADOOP fs -rm -r -skipTrash ${online_model_path} else echo "数据不存在" fi $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path} if [ $? -eq 0 ]; then echo "推荐模型文件至OSS成功" else echo "推荐模型文件至OSS失败" /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败" exit 1 fi # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证 cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt if [ $? -ne 0 ]; then echo "模型备份失败" /root/anaconda3/bin/python ad/ad_monitor_util.py "模型备份失败 - 最新模型地址: ${MODEL_PATH}/${model_name}_${today_early_1}.txt" exit 1 fi # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1