02_ad_model_update_test.sh 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. #!/bin/sh
  2. set -x
  3. export PATH=$SPARK_HOME/bin:$PATH
  4. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  5. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  6. export PREDICT_CACHE_PATH=/root/zhaohp/XGB/predict_cache/
  7. export SEGMENT_BASE_PATH=/dw/recommend/model/36_model_attachment/score_calibration_file
  8. sh_path=$(cd $(dirname $0); pwd)
  9. source ${sh_path}/00_common.sh
  10. source /root/anaconda3/bin/activate py37
  11. # 全局常量
  12. LOG_PREFIX=广告模型训练任务
  13. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  14. TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4
  15. BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4
  16. TABLE=alg_recsys_ad_sample_all
  17. # 特征文件名
  18. feature_file=20240703_ad_feature_name.txt
  19. # 模型本地临时保存路径
  20. model_local_home=/root/zhaohp/XGB/
  21. # 模型HDFS保存路径,测试时修改为其他路径,避免影响线上
  22. MODEL_PATH=/dw/recommend/model/35_ad_model
  23. # 预测结果保存路径,测试时修改为其他路径,避免影响线上
  24. PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data
  25. # 模型OSS保存路径,测试时修改为其他路径,避免影响线上
  26. MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  27. # 线上模型名,测试时修改为其他模型名,避免影响线上
  28. model_name=model_xgb_351_1000_v2
  29. # 线上校准文件名
  30. OSS_CALIBRATION_FILE_NAME=model_xgb_351_1000_v2_calibration
  31. # 用于存放一些临时的文件
  32. PREDICT_CACHE_PATH=/root/zhaohp/XGB/predict_cache
  33. # 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上
  34. model_path_file=${model_local_home}/online_model_path.txt
  35. # 获取当前是星期几,1表示星期一
  36. current_day_of_week="$(date +"%u")"
  37. # 任务开始时间
  38. start_time=$(date +%s)
  39. # 前一天
  40. today_early_1=20241218
  41. # 线上模型在HDFS中的路径
  42. online_model_path=`cat ${model_path_file}`
  43. # 训练用的数据路径
  44. train_data_path=""
  45. # 评估用的数据路径
  46. predict_date_path=""
  47. #评估结果保存路径
  48. new_model_predict_result_path=""
  49. # 模型保存路径
  50. model_save_path=""
  51. # 评测结果保存路径,后续需要根据此文件评估是否要更新模型
  52. predict_analyse_file_path=""
  53. # 校准文件保存路径
  54. calibration_file_path=""
  55. # 保存模型评估的分析结果
  56. old_incr_rate_avg=0
  57. new_incr_rate_avg=0
  58. # Top10的详情
  59. top10_msg=""
  60. # AUC值
  61. old_auc=0
  62. new_auc=0
  63. declare -A real_score_map
  64. declare -A old_score_map
  65. declare -A new_score_map
  66. # 校验命令的退出码
  67. check_run_status() {
  68. local status=$1
  69. local step_start_time=$2
  70. local step_name=$3
  71. local msg=$4
  72. local step_end_time=$(date +%s)
  73. local step_elapsed=$(($step_end_time - $step_start_time))
  74. if [[ -n "${old_auc}" && "${old_auc}" != "0" ]]; then
  75. msg+="\n\t - 老模型AUC: ${old_auc}"
  76. fi
  77. if [[ -n "${new_auc}" && "${new_auc}" != "0" ]]; then
  78. msg+="\n\t - 新模型AUC: ${new_auc}"
  79. fi
  80. if [ ${status} -ne 0 ]; then
  81. echo "${LOG_PREFIX} -- ${step_name}失败: 耗时 ${step_elapsed}"
  82. local elapsed=$(($step_end_time - $start_time))
  83. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
  84. exit 1
  85. else
  86. echo "${LOG_PREFIX} -- ${step_name}成功: 耗时 ${step_elapsed}"
  87. fi
  88. }
  89. send_success_upload_msg(){
  90. # 发送更新成功通知
  91. local msg=" 广告模型文件更新完成"
  92. msg+="\n\t - 老模型AUC: ${old_auc}"
  93. msg+="\n\t - 新模型AUC: ${new_auc}"
  94. msg+="\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}"
  95. msg+="\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}"
  96. msg+="\n\t - 模型在HDFS中的路径: ${model_save_path}"
  97. msg+="\n\t - 模型上传OSS中的路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
  98. local step_end_time=$(date +%s)
  99. local elapsed=$((${step_end_time} - ${start_time}))
  100. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
  101. }
  102. init() {
  103. declare -a date_keys=()
  104. local count=1
  105. local current_data="$(date -d '1 days ago' +%Y%m%d)"
  106. # 循环获取前 n 天的非节日日期
  107. while [[ ${count} -le 7 ]]; do
  108. date_key=$(date -d "${current_data}" +%Y%m%d)
  109. # 判断是否是节日,并拼接训练数据路径
  110. if [ $(is_not_holidays ${date_key}) -eq 1 ]; then
  111. # 将 date_key 放入数组
  112. date_keys+=("${date_key}")
  113. if [[ -z ${train_data_path} ]]; then
  114. train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
  115. else
  116. train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
  117. fi
  118. count=$((count + 1))
  119. else
  120. echo "日期: ${date_key}是节日,跳过"
  121. fi
  122. current_data=$(date -d "${current_data} -1 day" +%Y%m%d)
  123. done
  124. last_index=$((${#date_keys[@]} - 1))
  125. train_first_day=${date_keys[$last_index]}
  126. train_last_day=${date_keys[0]}
  127. model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
  128. predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
  129. new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${train_first_day: -4}_${train_last_day: -4}
  130. online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${online_model_path: -9}
  131. predict_analyse_file_path=${model_local_home}/predict_analyse_file/${today_early_1}_351_1000_analyse.txt
  132. calibration_file_path=${model_local_home}/${OSS_CALIBRATION_FILE_NAME}.txt
  133. echo "init param train_data_path: ${train_data_path}"
  134. echo "init param predict_date_path: ${predict_date_path}"
  135. echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
  136. echo "init param online_model_predict_result_path: ${online_model_predict_result_path}"
  137. echo "init param model_save_path: ${model_save_path}"
  138. echo "init param online_model_path: ${online_model_path}"
  139. echo "init param feature_file: ${feature_file}"
  140. echo "init param model_name: ${model_name}"
  141. echo "init param model_local_home: ${model_local_home}"
  142. echo "init param model_oss_path: ${MODEL_OSS_PATH}"
  143. echo "init param predict_analyse_file_path: ${predict_analyse_file_path}"
  144. echo "init param calibration_file_path: ${calibration_file_path}"
  145. echo "init param current_day_of_week: ${current_day_of_week}"
  146. echo "当前Python环境安装的Python版本: $(python --version)"
  147. echo "当前Python环境安装的三方包: $(python -m pip list)"
  148. }
  149. # 校验大数据任务是否执行完成
  150. check_ad_hive() {
  151. local step_start_time=$(date +%s)
  152. local max_hour=05
  153. local max_minute=30
  154. local elapsed=0
  155. while true; do
  156. local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
  157. elapsed=$(($(date +%s) - ${step_start_time}))
  158. if [ "${python_return_code}" -eq 0 ]; then
  159. break
  160. fi
  161. echo "Python程序返回非0值,等待五分钟后再次调用。"
  162. sleep 300
  163. local current_hour=$(date +%H)
  164. local current_minute=$(date +%M)
  165. if (( ${current_hour} > ${max_hour} || ( ${current_hour} == ${max_hour} && ${current_minute} >= ${max_minute} ) )); then
  166. local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
  167. echo -e "${LOG_PREFIX} -- 大数据数据生产校验 -- ${msg}: 耗时 ${elapsed}"
  168. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}"
  169. exit 1
  170. fi
  171. done
  172. echo "${LOG_PREFIX} -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 ${elapsed}"
  173. }
  174. origin_data() {
  175. (
  176. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  177. make_origin_data
  178. )
  179. }
  180. bucket_feature() {
  181. (
  182. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  183. make_bucket_feature
  184. )
  185. }
  186. xgb_train() {
  187. local step_start_time=$(date +%s)
  188. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  189. --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20240808 \
  190. --master yarn --driver-memory 6G --executor-memory 10G --executor-cores 1 --num-executors 31 \
  191. --conf spark.yarn.executor.memoryoverhead=2048 \
  192. --conf spark.shuffle.service.enabled=true \
  193. --conf spark.shuffle.service.port=7337 \
  194. --conf spark.shuffle.consolidateFiles=true \
  195. --conf spark.shuffle.manager=sort \
  196. --conf spark.storage.memoryFraction=0.4 \
  197. --conf spark.shuffle.memoryFraction=0.5 \
  198. --conf spark.default.parallelism=200 \
  199. /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  200. featureFile:20240703_ad_feature_name.txt \
  201. trainPath:${train_data_path} \
  202. testPath:${predict_date_path} \
  203. savePath:${new_model_predict_result_path} \
  204. modelPath:${model_save_path} \
  205. eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
  206. local return_code=$?
  207. check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败"
  208. }
  209. calc_model_predict() {
  210. local count=0
  211. local max_line=10
  212. local old_total_diff=0
  213. local new_total_diff=0
  214. top10_msg="| CID | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |"
  215. top10_msg+=" \n| ---- | --------- | -------- |"
  216. while read -r line && [ ${count} -lt ${max_line} ]; do
  217. # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
  218. if [[ "${line}" == *"cid"* ]]; then
  219. continue
  220. fi
  221. read -a numbers <<< "${line}"
  222. # 分数分别保存
  223. real_score_map[${numbers[0]}]=${numbers[3]}
  224. old_score_map[${numbers[0]}]=${numbers[6]}
  225. new_score_map[${numbers[0]}]=${numbers[7]}
  226. # 拼接Top10详情的飞书消息
  227. top10_msg="${top10_msg} \n| ${numbers[0]} | ${numbers[6]} | ${numbers[7]} | "
  228. # 计算top10相对误差绝对值的均值
  229. old_abs_score=$( echo "${numbers[6]} * ((${numbers[6]} >= 0) * 2 - 1)" | bc -l )
  230. new_abs_score=$( echo "${numbers[7]} * ((${numbers[7]} >= 0) * 2 - 1)" | bc -l )
  231. old_total_diff=$( echo "${old_total_diff} + ${old_abs_score}" | bc -l )
  232. new_total_diff=$( echo "${new_total_diff} + ${new_abs_score}" | bc -l )
  233. count=$((${count} + 1))
  234. done < "${predict_analyse_file_path}"
  235. local return_code=$?
  236. check_run_status ${return_code} ${step_start_time} "计算Top10差异" "计算Top10差异异常"
  237. old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
  238. check_run_status $? ${step_start_time} "计算老模型Top10差异" "计算老模型Top10差异异常"
  239. new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
  240. check_run_status $? ${step_start_time} "计算新模型Top10差异" "计算新模型Top10差异异常"
  241. echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
  242. echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
  243. echo "新老模型分数对比: "
  244. for cid in "${!new_score_map[@]}"; do
  245. echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}"
  246. done
  247. }
  248. calc_auc() {
  249. old_auc=`cat ${PREDICT_CACHE_PATH}/old_1.txt | /root/sunmingze/AUC/AUC`
  250. new_auc=`cat ${PREDICT_CACHE_PATH}/new_1.txt | /root/sunmingze/AUC/AUC`
  251. }
  252. model_predict() {
  253. # 线上模型评估最新的数据
  254. local step_start_time=$(date +%s)
  255. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  256. --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
  257. --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 30 \
  258. --conf spark.yarn.executor.memoryoverhead=1024 \
  259. --conf spark.shuffle.service.enabled=true \
  260. --conf spark.shuffle.service.port=7337 \
  261. --conf spark.shuffle.consolidateFiles=true \
  262. --conf spark.shuffle.manager=sort \
  263. --conf spark.storage.memoryFraction=0.4 \
  264. --conf spark.shuffle.memoryFraction=0.5 \
  265. --conf spark.default.parallelism=200 \
  266. /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  267. featureFile:20240703_ad_feature_name.txt \
  268. testPath:${predict_date_path} \
  269. savePath:${online_model_predict_result_path} \
  270. modelPath:${online_model_path}
  271. local return_code=$?
  272. check_run_status ${return_code} ${step_start_time} "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败"
  273. # 结果分析
  274. local python_return_code=$(python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path})
  275. check_run_status ${python_return_code} ${step_start_time} "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败"
  276. calc_model_predict
  277. calc_auc
  278. if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then
  279. echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  280. # check_run_status 1 ${step_start_time} "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  281. # exit 1
  282. fi
  283. # 对比两个模型的差异
  284. score_diff=$( echo "${new_incr_rate_avg} - ${old_incr_rate_avg}" | bc -l )
  285. if (( $(echo "${score_diff} > 0.050000" | bc -l ) ));then
  286. echo "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查"
  287. # check_run_status 1 ${step_start_time} "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05"
  288. # exit 1
  289. fi
  290. }
  291. model_upload_oss() {
  292. local step_start_time=$(date +%s)
  293. (
  294. cd ${model_local_home}
  295. ${HADOOP} fs -get ${model_save_path} ${model_name}
  296. if [ ! -d ${model_name} ]; then
  297. echo "从HDFS下载模型失败"
  298. check_run_status 1 ${step_start_time} "HDFS下载模型任务" "HDFS下载模型失败"
  299. exit 1
  300. fi
  301. tar -czvf ${model_name}.tar.gz -C ${model_name} .
  302. rm -rf ${model_name}.tar.gz.crc
  303. # 从OSS中移除模型文件和校准文件
  304. ${HADOOP} fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz ${MODEL_OSS_PATH}/${OSS_CALIBRATION_FILE_NAME}.txt
  305. # 将模型文件和校准文件推送到OSS上
  306. ${HADOOP} fs -put ${model_name}.tar.gz ${OSS_CALIBRATION_FILE_NAME}.txt ${MODEL_OSS_PATH}
  307. local return_code=$?
  308. check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
  309. echo ${model_save_path} > ${model_path_file}
  310. #
  311. rm -f ./${model_name}.tar.gz
  312. rm -rf ./${model_name}
  313. rm -rf ${OSS_CALIBRATION_FILE_NAME}.txt
  314. )
  315. local return_code=$?
  316. check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
  317. local step_end_time=$(date +%s)
  318. local elapsed=$((${step_end_time} - ${start_time}))
  319. echo -e "${LOG_PREFIX} -- 模型更新完成 -- 模型更新成功: 耗时 ${elapsed}"
  320. send_success_upload_msg
  321. }
  322. # 主方法
  323. main() {
  324. init
  325. xgb_train
  326. model_predict
  327. model_upload_oss
  328. }
  329. main