123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407 |
- #!/bin/sh
- set -x
- export PATH=$SPARK_HOME/bin:$PATH
- export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
- export JAVA_HOME=/usr/lib/jvm/java-1.8.0
- export PREDICT_CACHE_PATH=/root/zhaohp/XGB/predict_cache/
- export SEGMENT_BASE_PATH=/dw/recommend/model/36_model_attachment/score_calibration_file
- sh_path=$(cd $(dirname $0); pwd)
- source ${sh_path}/00_common.sh
- source /root/anaconda3/bin/activate py37
- # 全局常量
- LOG_PREFIX=广告模型训练任务
- HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
- TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4
- BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4
- TABLE=alg_recsys_ad_sample_all
- # 特征文件名
- feature_file=20240703_ad_feature_name.txt
- # 模型本地临时保存路径
- model_local_home=/root/zhaohp/XGB/
- # 模型HDFS保存路径,测试时修改为其他路径,避免影响线上
- MODEL_PATH=/dw/recommend/model/35_ad_model
- # 预测结果保存路径,测试时修改为其他路径,避免影响线上
- PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data
- # 模型OSS保存路径,测试时修改为其他路径,避免影响线上
- MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
- # 线上模型名,测试时修改为其他模型名,避免影响线上
- model_name=model_xgb_351_1000_v2
- # 线上校准文件名
- OSS_CALIBRATION_FILE_NAME=model_xgb_351_1000_v2_calibration
- # 用于存放一些临时的文件
- PREDICT_CACHE_PATH=/root/zhaohp/XGB/predict_cache
- # 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上
- model_path_file=${model_local_home}/online_model_path.txt
- # 获取当前是星期几,1表示星期一
- current_day_of_week="$(date +"%u")"
- # 任务开始时间
- start_time=$(date +%s)
- # 前一天
- today_early_1=20241218
- # 线上模型在HDFS中的路径
- online_model_path=`cat ${model_path_file}`
- # 训练用的数据路径
- train_data_path=""
- # 评估用的数据路径
- predict_date_path=""
- #评估结果保存路径
- new_model_predict_result_path=""
- # 模型保存路径
- model_save_path=""
- # 评测结果保存路径,后续需要根据此文件评估是否要更新模型
- predict_analyse_file_path=""
- # 校准文件保存路径
- calibration_file_path=""
- # 保存模型评估的分析结果
- old_incr_rate_avg=0
- new_incr_rate_avg=0
- # Top10的详情
- top10_msg=""
- # AUC值
- old_auc=0
- new_auc=0
- declare -A real_score_map
- declare -A old_score_map
- declare -A new_score_map
- # 校验命令的退出码
- check_run_status() {
- local status=$1
- local step_start_time=$2
- local step_name=$3
- local msg=$4
- local step_end_time=$(date +%s)
- local step_elapsed=$(($step_end_time - $step_start_time))
- if [[ -n "${old_auc}" && "${old_auc}" != "0" ]]; then
- msg+="\n\t - 老模型AUC: ${old_auc}"
- fi
- if [[ -n "${new_auc}" && "${new_auc}" != "0" ]]; then
- msg+="\n\t - 新模型AUC: ${new_auc}"
- fi
- if [ ${status} -ne 0 ]; then
- echo "${LOG_PREFIX} -- ${step_name}失败: 耗时 ${step_elapsed}"
- local elapsed=$(($step_end_time - $start_time))
- /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
- exit 1
- else
- echo "${LOG_PREFIX} -- ${step_name}成功: 耗时 ${step_elapsed}"
- fi
- }
- send_success_upload_msg(){
- # 发送更新成功通知
- local msg=" 广告模型文件更新完成"
- msg+="\n\t - 老模型AUC: ${old_auc}"
- msg+="\n\t - 新模型AUC: ${new_auc}"
- msg+="\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}"
- msg+="\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}"
- msg+="\n\t - 模型在HDFS中的路径: ${model_save_path}"
- msg+="\n\t - 模型上传OSS中的路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
- local step_end_time=$(date +%s)
- local elapsed=$((${step_end_time} - ${start_time}))
- /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
- }
- init() {
-
- declare -a date_keys=()
- local count=1
- local current_data="$(date -d '1 days ago' +%Y%m%d)"
- # 循环获取前 n 天的非节日日期
- while [[ ${count} -le 7 ]]; do
- date_key=$(date -d "${current_data}" +%Y%m%d)
- # 判断是否是节日,并拼接训练数据路径
- if [ $(is_not_holidays ${date_key}) -eq 1 ]; then
- # 将 date_key 放入数组
- date_keys+=("${date_key}")
- if [[ -z ${train_data_path} ]]; then
- train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
- else
- train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
- fi
- count=$((count + 1))
- else
- echo "日期: ${date_key}是节日,跳过"
- fi
- current_data=$(date -d "${current_data} -1 day" +%Y%m%d)
- done
- last_index=$((${#date_keys[@]} - 1))
- train_first_day=${date_keys[$last_index]}
- train_last_day=${date_keys[0]}
- model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
- predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
- new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${train_first_day: -4}_${train_last_day: -4}
- online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${online_model_path: -9}
- predict_analyse_file_path=${model_local_home}/predict_analyse_file/${today_early_1}_351_1000_analyse.txt
- calibration_file_path=${model_local_home}/${OSS_CALIBRATION_FILE_NAME}.txt
- echo "init param train_data_path: ${train_data_path}"
- echo "init param predict_date_path: ${predict_date_path}"
- echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
- echo "init param online_model_predict_result_path: ${online_model_predict_result_path}"
- echo "init param model_save_path: ${model_save_path}"
- echo "init param online_model_path: ${online_model_path}"
- echo "init param feature_file: ${feature_file}"
- echo "init param model_name: ${model_name}"
- echo "init param model_local_home: ${model_local_home}"
- echo "init param model_oss_path: ${MODEL_OSS_PATH}"
- echo "init param predict_analyse_file_path: ${predict_analyse_file_path}"
- echo "init param calibration_file_path: ${calibration_file_path}"
- echo "init param current_day_of_week: ${current_day_of_week}"
- echo "当前Python环境安装的Python版本: $(python --version)"
- echo "当前Python环境安装的三方包: $(python -m pip list)"
- }
- # 校验大数据任务是否执行完成
- check_ad_hive() {
- local step_start_time=$(date +%s)
- local max_hour=05
- local max_minute=30
- local elapsed=0
- while true; do
- local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
- elapsed=$(($(date +%s) - ${step_start_time}))
- if [ "${python_return_code}" -eq 0 ]; then
- break
- fi
- echo "Python程序返回非0值,等待五分钟后再次调用。"
- sleep 300
- local current_hour=$(date +%H)
- local current_minute=$(date +%M)
- if (( ${current_hour} > ${max_hour} || ( ${current_hour} == ${max_hour} && ${current_minute} >= ${max_minute} ) )); then
- local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
- echo -e "${LOG_PREFIX} -- 大数据数据生产校验 -- ${msg}: 耗时 ${elapsed}"
- /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}"
- exit 1
- fi
- done
- echo "${LOG_PREFIX} -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 ${elapsed}"
- }
- origin_data() {
- (
- source ${sh_path}/25_xgb_make_data_origin_bucket.sh
- make_origin_data
- )
- }
- bucket_feature() {
- (
- source ${sh_path}/25_xgb_make_data_origin_bucket.sh
- make_bucket_feature
- )
- }
- xgb_train() {
- local step_start_time=$(date +%s)
- /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
- --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20240808 \
- --master yarn --driver-memory 6G --executor-memory 10G --executor-cores 1 --num-executors 31 \
- --conf spark.yarn.executor.memoryoverhead=2048 \
- --conf spark.shuffle.service.enabled=true \
- --conf spark.shuffle.service.port=7337 \
- --conf spark.shuffle.consolidateFiles=true \
- --conf spark.shuffle.manager=sort \
- --conf spark.storage.memoryFraction=0.4 \
- --conf spark.shuffle.memoryFraction=0.5 \
- --conf spark.default.parallelism=200 \
- /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
- featureFile:20240703_ad_feature_name.txt \
- trainPath:${train_data_path} \
- testPath:${predict_date_path} \
- savePath:${new_model_predict_result_path} \
- modelPath:${model_save_path} \
- eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
- local return_code=$?
- check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败"
- }
- calc_model_predict() {
- local count=0
- local max_line=10
- local old_total_diff=0
- local new_total_diff=0
- top10_msg="| CID | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |"
- top10_msg+=" \n| ---- | --------- | -------- |"
- while read -r line && [ ${count} -lt ${max_line} ]; do
- # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
- if [[ "${line}" == *"cid"* ]]; then
- continue
- fi
- read -a numbers <<< "${line}"
- # 分数分别保存
- real_score_map[${numbers[0]}]=${numbers[3]}
- old_score_map[${numbers[0]}]=${numbers[6]}
- new_score_map[${numbers[0]}]=${numbers[7]}
- # 拼接Top10详情的飞书消息
- top10_msg="${top10_msg} \n| ${numbers[0]} | ${numbers[6]} | ${numbers[7]} | "
- # 计算top10相对误差绝对值的均值
- old_abs_score=$( echo "${numbers[6]} * ((${numbers[6]} >= 0) * 2 - 1)" | bc -l )
- new_abs_score=$( echo "${numbers[7]} * ((${numbers[7]} >= 0) * 2 - 1)" | bc -l )
- old_total_diff=$( echo "${old_total_diff} + ${old_abs_score}" | bc -l )
- new_total_diff=$( echo "${new_total_diff} + ${new_abs_score}" | bc -l )
- count=$((${count} + 1))
- done < "${predict_analyse_file_path}"
- local return_code=$?
- check_run_status ${return_code} ${step_start_time} "计算Top10差异" "计算Top10差异异常"
- old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
- check_run_status $? ${step_start_time} "计算老模型Top10差异" "计算老模型Top10差异异常"
- new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
- check_run_status $? ${step_start_time} "计算新模型Top10差异" "计算新模型Top10差异异常"
- echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
- echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
- echo "新老模型分数对比: "
- for cid in "${!new_score_map[@]}"; do
- echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}"
- done
- }
- calc_auc() {
- old_auc=`cat ${PREDICT_CACHE_PATH}/old_1.txt | /root/sunmingze/AUC/AUC`
- new_auc=`cat ${PREDICT_CACHE_PATH}/new_1.txt | /root/sunmingze/AUC/AUC`
- }
- model_predict() {
- # 线上模型评估最新的数据
- local step_start_time=$(date +%s)
- /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
- --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
- --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 30 \
- --conf spark.yarn.executor.memoryoverhead=1024 \
- --conf spark.shuffle.service.enabled=true \
- --conf spark.shuffle.service.port=7337 \
- --conf spark.shuffle.consolidateFiles=true \
- --conf spark.shuffle.manager=sort \
- --conf spark.storage.memoryFraction=0.4 \
- --conf spark.shuffle.memoryFraction=0.5 \
- --conf spark.default.parallelism=200 \
- /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
- featureFile:20240703_ad_feature_name.txt \
- testPath:${predict_date_path} \
- savePath:${online_model_predict_result_path} \
- modelPath:${online_model_path}
- local return_code=$?
- check_run_status ${return_code} ${step_start_time} "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败"
- # 结果分析
- local python_return_code=$(python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path})
- check_run_status ${python_return_code} ${step_start_time} "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败"
- calc_model_predict
- calc_auc
- if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then
- echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
- # check_run_status 1 ${step_start_time} "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
- # exit 1
- fi
- # 对比两个模型的差异
- score_diff=$( echo "${new_incr_rate_avg} - ${old_incr_rate_avg}" | bc -l )
- if (( $(echo "${score_diff} > 0.050000" | bc -l ) ));then
- echo "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查"
- # check_run_status 1 ${step_start_time} "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05"
- # exit 1
- fi
- }
- model_upload_oss() {
- local step_start_time=$(date +%s)
- (
- cd ${model_local_home}
- ${HADOOP} fs -get ${model_save_path} ${model_name}
- if [ ! -d ${model_name} ]; then
- echo "从HDFS下载模型失败"
- check_run_status 1 ${step_start_time} "HDFS下载模型任务" "HDFS下载模型失败"
- exit 1
- fi
- tar -czvf ${model_name}.tar.gz -C ${model_name} .
- rm -rf ${model_name}.tar.gz.crc
- # 从OSS中移除模型文件和校准文件
- ${HADOOP} fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz ${MODEL_OSS_PATH}/${OSS_CALIBRATION_FILE_NAME}.txt
-
- # 将模型文件和校准文件推送到OSS上
- ${HADOOP} fs -put ${model_name}.tar.gz ${OSS_CALIBRATION_FILE_NAME}.txt ${MODEL_OSS_PATH}
- local return_code=$?
- check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
- echo ${model_save_path} > ${model_path_file}
- #
- rm -f ./${model_name}.tar.gz
- rm -rf ./${model_name}
- rm -rf ${OSS_CALIBRATION_FILE_NAME}.txt
- )
- local return_code=$?
- check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
- local step_end_time=$(date +%s)
- local elapsed=$((${step_end_time} - ${start_time}))
- echo -e "${LOG_PREFIX} -- 模型更新完成 -- 模型更新成功: 耗时 ${elapsed}"
-
- send_success_upload_msg
- }
- # 主方法
- main() {
- init
- xgb_train
- model_predict
- model_upload_oss
- }
- main
|