|
@@ -1,131 +1,56 @@
|
|
|
import argparse
|
|
|
import gzip
|
|
|
import os.path
|
|
|
-from collections import OrderedDict
|
|
|
|
|
|
import pandas as pd
|
|
|
from hdfs import InsecureClient
|
|
|
|
|
|
client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
|
|
|
|
|
|
-SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_score_calibration_file")
|
|
|
+SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_model_attachment/score_calibration_file")
|
|
|
PREDICT_CACHE_PATH = os.environ.get("PREDICT_CACHE_PATH", "/root/zhaohp/XGB/predict_cache")
|
|
|
|
|
|
|
|
|
-def read_predict_from_local_txt(txt_file) -> list:
|
|
|
- result = []
|
|
|
- with open(txt_file, "r") as f:
|
|
|
- for line in f.readlines():
|
|
|
- sp = line.replace("\n", "").split("\t")
|
|
|
- if len(sp) == 4:
|
|
|
- label = int(sp[0])
|
|
|
- cid = sp[3].split("_")[0]
|
|
|
- score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
|
|
|
- result.append({
|
|
|
- "label": label,
|
|
|
- "cid": cid,
|
|
|
- "score": score
|
|
|
- })
|
|
|
- return result
|
|
|
-
|
|
|
-
|
|
|
-def read_predict_from_hdfs(hdfs_path: str) -> list:
|
|
|
- if not hdfs_path.endswith("/"):
|
|
|
- hdfs_path += "/"
|
|
|
- result = []
|
|
|
- for file in client.list(hdfs_path):
|
|
|
- with client.read(hdfs_path + file) as reader:
|
|
|
- with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
|
|
|
- for line in gz_file.read().decode("utf-8").split("\n"):
|
|
|
- split = line.split("\t")
|
|
|
- if len(split) == 4:
|
|
|
- cid = split[3].split("_")[0]
|
|
|
- label = int(split[0])
|
|
|
- score = float(split[2].replace("[", "").replace("]", "").split(",")[1])
|
|
|
- result.append({
|
|
|
- "cid": cid,
|
|
|
- "label": label,
|
|
|
- "score": score
|
|
|
- })
|
|
|
-
|
|
|
- return result
|
|
|
-
|
|
|
-
|
|
|
-def _segment_v1(scores, step):
|
|
|
- bins = []
|
|
|
- for i in range(0, len(scores), int((len(scores) / step))):
|
|
|
- if i == 0:
|
|
|
- bins.append(0)
|
|
|
- else:
|
|
|
- bins.append(scores[i])
|
|
|
- bins.append(1)
|
|
|
- return list(OrderedDict.fromkeys(bins))
|
|
|
-
|
|
|
-
|
|
|
-def segment_calc_diff_rate_by_score(df: pd.DataFrame, segment_file_path: str, step=100) -> [pd.DataFrame, pd.DataFrame]:
|
|
|
- sored_df = df.sort_values(by=['score'])
|
|
|
- # 评估分数分段
|
|
|
- scores = sored_df['score'].values
|
|
|
-
|
|
|
- bins = _segment_v1(scores, step)
|
|
|
-
|
|
|
- # 等分分桶
|
|
|
- # split_indices = np.array_split(np.arange(len(scores)), step)
|
|
|
- # bins = [scores[index[0]] for index in split_indices] + [scores[split_indices[-1][-1]]]
|
|
|
-
|
|
|
- sored_df['score_segment'] = pd.cut(sored_df['score'], bins=bins)
|
|
|
-
|
|
|
- # 计算分段内分数的差异
|
|
|
- group_df = sored_df.groupby("score_segment", observed=True).agg(
|
|
|
- segment_label_sum=('label', 'sum'),
|
|
|
- segment_label_cnt=('label', 'count'),
|
|
|
- segment_score_avg=('score', 'mean'),
|
|
|
- ).reset_index()
|
|
|
- group_df['segment_true_score'] = group_df['segment_label_sum'] / group_df['segment_label_cnt']
|
|
|
- group_df['segment_diff_rate'] = (group_df['segment_score_avg'] / group_df['segment_true_score'] - 1).mask(group_df['segment_true_score'] == 0, 0)
|
|
|
-
|
|
|
- # 完整的分段文件保存
|
|
|
- csv_data = group_df.to_csv(sep="\t", index=False)
|
|
|
- with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
|
|
|
- writer.write(csv_data)
|
|
|
-
|
|
|
- filtered_df = group_df[(abs(group_df['segment_diff_rate']) >= 0.2) & (group_df['segment_label_cnt'] >= 1000)]
|
|
|
- filtered_df = filtered_df[['score_segment', 'segment_diff_rate']]
|
|
|
- # 每条曝光数据添加对应分数的diff
|
|
|
- merged_df = pd.merge(sored_df, filtered_df, on="score_segment", how="left")
|
|
|
-
|
|
|
- merged_df['segment_diff_rate'] = merged_df['segment_diff_rate'].fillna(0)
|
|
|
- return merged_df, filtered_df
|
|
|
-
|
|
|
-
|
|
|
-def read_and_calibration_predict(predict_path: str, step=100) -> [pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
|
|
- """
|
|
|
- 读取评估结果,并进行校准
|
|
|
- """
|
|
|
- # 本地调试使用
|
|
|
- # predicts = read_predict_from_local_txt(predict_path)
|
|
|
- predicts = read_predict_from_hdfs(predict_path)
|
|
|
- df = pd.DataFrame(predicts)
|
|
|
+def parse_predict_line(line: str) -> [bool, dict]:
|
|
|
+ sp = line.replace("\n", "").split("\t")
|
|
|
+ if len(sp) == 4:
|
|
|
+ label = int(sp[0])
|
|
|
+ cid = sp[3].split("_")[0]
|
|
|
+ score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
|
|
|
+ return True, {
|
|
|
+ "label": label,
|
|
|
+ "cid": cid,
|
|
|
+ "score": score
|
|
|
+ }
|
|
|
+ return False, {}
|
|
|
|
|
|
- # 模型分分段计算与真实ctcvr的dff_rate
|
|
|
- predict_basename = os.path.basename(predict_path)
|
|
|
- if predict_basename.endswith("/"):
|
|
|
- predict_basename = predict_basename[:-1]
|
|
|
- df, segment_df = segment_calc_diff_rate_by_score(df, segment_file_path=f"{SEGMENT_BASE_PATH}/{predict_basename}.txt", step=100)
|
|
|
-
|
|
|
- # 生成校准后的分数
|
|
|
- df['score_2'] = df['score'] / (1 + df['segment_diff_rate'])
|
|
|
-
|
|
|
- # 按CID统计真实ctcvr和校准前后的平均模型分
|
|
|
- grouped_df = df.groupby("cid").agg(
|
|
|
- view=('cid', 'size'),
|
|
|
- conv=('label', 'sum'),
|
|
|
- score_avg=('score', lambda x: round(x.mean(), 6)),
|
|
|
- score_2_avg=('score_2', lambda x: round(x.mean(), 6)),
|
|
|
- ).reset_index()
|
|
|
- grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
|
|
|
|
|
|
- return df, grouped_df, segment_df
|
|
|
+def read_predict_file(file_path: str) -> pd.DataFrame:
|
|
|
+ result = []
|
|
|
+ if file_path.startswith("/dw"):
|
|
|
+ if not file_path.endswith("/"):
|
|
|
+ file_path += "/"
|
|
|
+ for file in client.list(file_path):
|
|
|
+ with client.read(file_path + file) as reader:
|
|
|
+ with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
|
|
|
+ for line in gz_file.read().decode("utf-8").split("\n"):
|
|
|
+ b, d = parse_predict_line(line)
|
|
|
+ if b: result.append(d)
|
|
|
+ else:
|
|
|
+ with open(file_path, "r") as f:
|
|
|
+ for line in f.readlines():
|
|
|
+ b, d = parse_predict_line(line)
|
|
|
+ if b: result.append(d)
|
|
|
+ return pd.DataFrame(result)
|
|
|
+
|
|
|
+
|
|
|
+def calibration_file_save(df: pd.DataFrame, file_path: str):
|
|
|
+ if file_path.startswith("/dw"):
|
|
|
+ # 完整的分段文件保存
|
|
|
+ with client.write(file_path, encoding='utf-8', overwrite=True) as writer:
|
|
|
+ writer.write(df.to_csv(sep="\t", index=False))
|
|
|
+ else:
|
|
|
+ df.tocsv(file_path, sep="\t", index=False)
|
|
|
|
|
|
|
|
|
def predict_local_save_for_auc(old_df: pd.DataFrame, new_df: pd.DataFrame):
|
|
@@ -134,27 +59,96 @@ def predict_local_save_for_auc(old_df: pd.DataFrame, new_df: pd.DataFrame):
|
|
|
"""
|
|
|
d = {"old": old_df, "new": new_df}
|
|
|
for key in d:
|
|
|
- df = d[key][['label', "score"]]
|
|
|
- df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_1.txt", sep="\t", index=False, header=False)
|
|
|
- df = d[key][['label', "score_2"]]
|
|
|
- df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_2.txt", sep="\t", index=False, header=False)
|
|
|
+ df = d[key]
|
|
|
+ if 'score' in df.columns:
|
|
|
+ score_df = df[['label', "score"]]
|
|
|
+ score_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_1.txt", sep="\t", index=False, header=False)
|
|
|
+ if 'score_2' in df.columns:
|
|
|
+ score_2_df = d[key][['label', "score_2"]]
|
|
|
+ score_2_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_2.txt", sep="\t", index=False, header=False)
|
|
|
+
|
|
|
+
|
|
|
+def save_full_calibration_file(df: pd.DataFrame, segment_file_path: str):
|
|
|
+ if segment_file_path.startswith("/dw"):
|
|
|
+ # 完整的分段文件保存
|
|
|
+ with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
|
|
|
+ writer.write(df.to_csv(sep="\t", index=False))
|
|
|
+ else:
|
|
|
+ df.to_csv(segment_file_path, sep="\t", index=False)
|
|
|
+
|
|
|
+
|
|
|
+def get_predict_calibration_file(df: pd.DataFrame, predict_basename: str) -> [pd.DataFrame]:
|
|
|
+ """
|
|
|
+ 计算模型分的diff_rate
|
|
|
+ """
|
|
|
+ agg_df = predict_df_agg(df)
|
|
|
+ agg_df['diff_rate'] = (agg_df['score_avg'] / agg_df['true_ctcvr'] - 1).mask(agg_df['true_ctcvr'] == 0, 0).round(6)
|
|
|
+ condition = 'view > 1000 and diff_rate >= 0.2'
|
|
|
+ save_full_calibration_file(agg_df, f"{SEGMENT_BASE_PATH}/{predict_basename}.txt")
|
|
|
+ calibration = agg_df[(agg_df['view'] > 1000) & ((agg_df['diff_rate'] >= 0.2) | (agg_df['diff_rate'] <= 0.2)) & agg_df['diff_rate'] != 0]
|
|
|
+ return calibration
|
|
|
+
|
|
|
+
|
|
|
+def get_predict_basename(predict_path) -> [str]:
|
|
|
+ """
|
|
|
+ 获取文件路径的最后一部分,作为与模型关联的文件名
|
|
|
+ """
|
|
|
+ predict_basename = os.path.basename(predict_path)
|
|
|
+ if predict_basename.endswith("/"):
|
|
|
+ predict_basename = predict_basename[:-1]
|
|
|
+
|
|
|
+ return predict_basename
|
|
|
+
|
|
|
+
|
|
|
+def calc_calibration_score2(df: pd.DataFrame, calibration_df: pd.DataFrame) -> [pd.DataFrame]:
|
|
|
+ calibration_df = calibration_df[['cid', 'diff_rate']]
|
|
|
+ df = pd.merge(df, calibration_df, on='cid', how='left').fillna(0)
|
|
|
+ df['score_2'] = df['score'] / (1 + df['diff_rate'])
|
|
|
+ return df
|
|
|
+
|
|
|
+
|
|
|
+def predict_df_agg(df: pd.DataFrame) -> [pd.DataFrame]:
|
|
|
+ # 基础聚合操作
|
|
|
+ agg_operations = {
|
|
|
+ 'view': ('cid', 'size'),
|
|
|
+ 'conv': ('label', 'sum'),
|
|
|
+ 'score_avg': ('score', lambda x: round(x.mean(), 6)),
|
|
|
+ }
|
|
|
+
|
|
|
+ # 如果存在 score_2 列,则增加相关聚合
|
|
|
+ if "score_2" in df.columns:
|
|
|
+ agg_operations['score_2_avg'] = ('score_2', lambda x: round(x.mean(), 6))
|
|
|
+
|
|
|
+ grouped_df = df.groupby("cid").agg(**agg_operations).reset_index()
|
|
|
+ grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
|
|
|
+
|
|
|
+ return grouped_df
|
|
|
|
|
|
|
|
|
def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
|
|
|
- old_df, old_group_df, old_segment_df = read_and_calibration_predict(old_predict_path)
|
|
|
- new_df, new_group_df, new_segment_df = read_and_calibration_predict(new_predict_path)
|
|
|
+ old_df = read_predict_file(old_predict_path)
|
|
|
+ new_df = read_predict_file(new_predict_path)
|
|
|
|
|
|
+ old_calibration_df = get_predict_calibration_file(old_df, get_predict_basename(old_predict_path))
|
|
|
+ old_df = calc_calibration_score2(old_df, old_calibration_df)
|
|
|
+
|
|
|
+ new_calibration_df = get_predict_calibration_file(new_df, get_predict_basename(new_predict_path))
|
|
|
+ new_df = calc_calibration_score2(new_df, new_calibration_df)
|
|
|
+
|
|
|
+ # 本地保存label、score以及校准后的score,用于计算AUC等信息
|
|
|
predict_local_save_for_auc(old_df, new_df)
|
|
|
|
|
|
- # 分段文件保存, 此处保留的最后使用的分段文件,不是所有的分段
|
|
|
- new_segment_df.to_csv(calibration_file, sep='\t', index=False, header=False)
|
|
|
+ # 新模型校准文件保存本地,用于同步OSS
|
|
|
+ new_calibration_df[['cid', 'diff_rate']].to_csv(calibration_file, sep="\t", index=False, header=False)
|
|
|
|
|
|
- # 字段重命名,和列过滤
|
|
|
- old_group_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg'}, inplace=True)
|
|
|
- new_group_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg'}, inplace=True)
|
|
|
- old_group_df = old_group_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg']]
|
|
|
- new_group_df = new_group_df[['cid', 'new_score_avg', 'new_score_2_avg']]
|
|
|
+ old_agg_df = predict_df_agg(old_df)
|
|
|
+ new_agg_df = predict_df_agg(new_df)
|
|
|
|
|
|
+ # 字段重命名,和列过滤
|
|
|
+ old_agg_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg'}, inplace=True)
|
|
|
+ new_agg_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg'}, inplace=True)
|
|
|
+ old_group_df = old_agg_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg']]
|
|
|
+ new_group_df = new_agg_df[['cid', 'new_score_avg', 'new_score_2_avg']]
|
|
|
merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
|
|
|
|
|
|
# 计算与真实ctcvr的差异值
|
|
@@ -183,7 +177,7 @@ def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, a
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
- parser = argparse.ArgumentParser(description="model_predict_analyse.py")
|
|
|
+ parser = argparse.ArgumentParser(description="model_predict_analyse_20241101.py")
|
|
|
parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
|
|
|
parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
|
|
|
parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
|