model_predict_analyse.py 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. import argparse
  2. import gzip
  3. import os.path
  4. import pandas as pd
  5. from hdfs import InsecureClient
  6. client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
  7. SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_model_attachment/score_calibration_file")
  8. PREDICT_CACHE_PATH = os.environ.get("PREDICT_CACHE_PATH", "/root/zhaohp/XGB/predict_cache")
  9. def parse_predict_line(line: str) -> [bool, dict]:
  10. sp = line.replace("\n", "").split("\t")
  11. if len(sp) == 4:
  12. label = int(sp[0])
  13. cid = sp[3].split("_")[0]
  14. score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
  15. return True, {
  16. "label": label,
  17. "cid": cid,
  18. "score": score
  19. }
  20. return False, {}
  21. def read_predict_file(file_path: str) -> pd.DataFrame:
  22. result = []
  23. if file_path.startswith("/dw"):
  24. if not file_path.endswith("/"):
  25. file_path += "/"
  26. for file in client.list(file_path):
  27. with client.read(file_path + file) as reader:
  28. with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
  29. for line in gz_file.read().decode("utf-8").split("\n"):
  30. b, d = parse_predict_line(line)
  31. if b: result.append(d)
  32. else:
  33. with open(file_path, "r") as f:
  34. for line in f.readlines():
  35. b, d = parse_predict_line(line)
  36. if b: result.append(d)
  37. return pd.DataFrame(result)
  38. def calibration_file_save(df: pd.DataFrame, file_path: str):
  39. if file_path.startswith("/dw"):
  40. # 完整的分段文件保存
  41. with client.write(file_path, encoding='utf-8', overwrite=True) as writer:
  42. writer.write(df.to_csv(sep="\t", index=False))
  43. else:
  44. df.tocsv(file_path, sep="\t", index=False)
  45. def predict_local_save_for_auc(old_df: pd.DataFrame, new_df: pd.DataFrame):
  46. """
  47. 本地保存一份评估结果, 计算AUC使用
  48. """
  49. d = {"old": old_df, "new": new_df}
  50. for key in d:
  51. df = d[key]
  52. if 'score' in df.columns:
  53. score_df = df[['label', "score"]]
  54. score_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_1.txt", sep="\t", index=False, header=False)
  55. if 'score_2' in df.columns:
  56. score_2_df = d[key][['label', "score_2"]]
  57. score_2_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_2.txt", sep="\t", index=False, header=False)
  58. def save_full_calibration_file(df: pd.DataFrame, segment_file_path: str):
  59. if segment_file_path.startswith("/dw"):
  60. # 完整的分段文件保存
  61. with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
  62. writer.write(df.to_csv(sep="\t", index=False))
  63. else:
  64. df.to_csv(segment_file_path, sep="\t", index=False)
  65. def get_predict_calibration_file(df: pd.DataFrame, predict_basename: str) -> [pd.DataFrame]:
  66. """
  67. 计算模型分的diff_rate
  68. """
  69. agg_df = predict_df_agg(df)
  70. agg_df['diff_rate'] = (agg_df['score_avg'] / agg_df['true_ctcvr'] - 1).mask(agg_df['true_ctcvr'] == 0, 0).round(6)
  71. condition = 'view > 1000 and diff_rate >= 0.2'
  72. save_full_calibration_file(agg_df, f"{SEGMENT_BASE_PATH}/{predict_basename}.txt")
  73. calibration = agg_df[(agg_df['view'] > 1000) & ((agg_df['diff_rate'] >= 0.2) | (agg_df['diff_rate'] <= 0.2)) & agg_df['diff_rate'] != 0]
  74. return calibration
  75. def get_predict_basename(predict_path) -> [str]:
  76. """
  77. 获取文件路径的最后一部分,作为与模型关联的文件名
  78. """
  79. predict_basename = os.path.basename(predict_path)
  80. if predict_basename.endswith("/"):
  81. predict_basename = predict_basename[:-1]
  82. return predict_basename
  83. def calc_calibration_score2(df: pd.DataFrame, calibration_df: pd.DataFrame) -> [pd.DataFrame]:
  84. calibration_df = calibration_df[['cid', 'diff_rate']]
  85. df = pd.merge(df, calibration_df, on='cid', how='left').fillna(0)
  86. df['score_2'] = df['score'] / (1 + df['diff_rate'])
  87. return df
  88. def predict_df_agg(df: pd.DataFrame) -> [pd.DataFrame]:
  89. # 基础聚合操作
  90. agg_operations = {
  91. 'view': ('cid', 'size'),
  92. 'conv': ('label', 'sum'),
  93. 'score_avg': ('score', lambda x: round(x.mean(), 6)),
  94. }
  95. # 如果存在 score_2 列,则增加相关聚合
  96. if "score_2" in df.columns:
  97. agg_operations['score_2_avg'] = ('score_2', lambda x: round(x.mean(), 6))
  98. grouped_df = df.groupby("cid").agg(**agg_operations).reset_index()
  99. grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
  100. return grouped_df
  101. def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
  102. old_df = read_predict_file(old_predict_path)
  103. new_df = read_predict_file(new_predict_path)
  104. old_calibration_df = get_predict_calibration_file(old_df, get_predict_basename(old_predict_path))
  105. old_df = calc_calibration_score2(old_df, old_calibration_df)
  106. new_calibration_df = get_predict_calibration_file(new_df, get_predict_basename(new_predict_path))
  107. new_df = calc_calibration_score2(new_df, new_calibration_df)
  108. # 本地保存label、score以及校准后的score,用于计算AUC等信息
  109. predict_local_save_for_auc(old_df, new_df)
  110. # 新模型校准文件保存本地,用于同步OSS
  111. new_calibration_df[['cid', 'diff_rate']].to_csv(calibration_file, sep="\t", index=False, header=False)
  112. old_agg_df = predict_df_agg(old_df)
  113. new_agg_df = predict_df_agg(new_df)
  114. # 字段重命名,和列过滤
  115. old_agg_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg'}, inplace=True)
  116. new_agg_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg'}, inplace=True)
  117. old_group_df = old_agg_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg']]
  118. new_group_df = new_agg_df[['cid', 'new_score_avg', 'new_score_2_avg']]
  119. merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
  120. # 计算与真实ctcvr的差异值
  121. merged["(new-true)/true"] = (merged['new_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  122. merged["(old-true)/true"] = (merged['old_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  123. # 计算校准后的模型分与ctcvr的差异值
  124. merged["(new2-true)/true"] = (merged['new_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  125. merged["(old2-true)/true"] = (merged['old_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  126. # 按照曝光排序,写入本地文件
  127. merged = merged.sort_values(by=['view'], ascending=False)
  128. merged = merged[[
  129. 'cid', 'view', "conv", "true_ctcvr",
  130. "old_score_avg", "new_score_avg", "(old-true)/true", "(new-true)/true",
  131. "old_score_2_avg", "new_score_2_avg", "(old2-true)/true", "(new2-true)/true",
  132. ]]
  133. # 根据文件名保存不同的格式
  134. if analyse_file.endswith(".csv"):
  135. merged.to_csv(analyse_file, index=False)
  136. else:
  137. with open(analyse_file, "w") as writer:
  138. writer.write(merged.to_string(index=False))
  139. print("0")
  140. if __name__ == '__main__':
  141. parser = argparse.ArgumentParser(description="model_predict_analyse_20241101.py")
  142. parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
  143. parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
  144. parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
  145. parser.add_argument("-cf", "--calibration_file", required=True, help="线上使用的segment文件保存路径")
  146. args = parser.parse_args()
  147. _main(
  148. old_predict_path=args.old_predict_path,
  149. new_predict_path=args.new_predict_path,
  150. calibration_file=args.calibration_file,
  151. analyse_file=args.analyse_file
  152. )