| 
					
				 | 
			
			
				@@ -23,64 +23,64 @@ export PATH=$SPARK_HOME/bin:$PATH 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 export JAVA_HOME=/usr/lib/jvm/java-1.8.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-# 1 判断依赖的数据表是否生产完成 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-source /root/anaconda3/bin/activate py37 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-while true; do 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  if [ $python_return_code -eq 0 ]; then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    echo "Python程序返回0,退出循环。" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    break 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  echo "Python程序返回非0值,等待五分钟后再次调用。" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  sleep 300 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  current_hour=$(date +%H) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  current_minute=$(date +%M) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    echo "最长等待时间已到,失败:${current_hour}-${current_minute}" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    msg="广告特征数据校验失败,大数据分区没有数据: ${today}10" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    exit 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-  fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-done 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-# 2 原始特征生成 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				---class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				---master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-tablePart:64 repartition:16 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-beginStr:${today_early_1}00 endStr:${today}10 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-savePath:${originDataSavePath} \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-idDefaultValue:0.01 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-if [ $? -ne 0 ]; then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   echo "Spark原始样本生产任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   msg="广告特征数据生成失败,Spark原始样本生产任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   exit 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    echo "spark原始样本生产执行成功" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-# 3 特征分桶 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				---class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				---master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-beginStr:${today_early_1} endStr:${today} repartition:100 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-filterNames:adid_,targeting_conversion_ \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-readPath:${originDataSavePath} \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-savePath:${bucketFeatureSavePath} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-if [ $? -ne 0 ]; then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   echo "Spark特征分桶处理任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   msg="广告特征分桶失败,Spark特征分桶处理任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   exit 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   echo "spark特征分桶处理执行成功" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+## 1 判断依赖的数据表是否生产完成 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#source /root/anaconda3/bin/activate py37 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#while true; do 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  if [ $python_return_code -eq 0 ]; then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    echo "Python程序返回0,退出循环。" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    break 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  echo "Python程序返回非0值,等待五分钟后再次调用。" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  sleep 300 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  current_hour=$(date +%H) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  current_minute=$(date +%M) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    echo "最长等待时间已到,失败:${current_hour}-${current_minute}" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    msg="广告特征数据校验失败,大数据分区没有数据: ${today}10" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    exit 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#  fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#done 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+## 2 原始特征生成 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#tablePart:64 repartition:16 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#beginStr:${today_early_1}00 endStr:${today}10 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#savePath:${originDataSavePath} \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#idDefaultValue:0.01 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#if [ $? -ne 0 ]; then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   echo "Spark原始样本生产任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   msg="广告特征数据生成失败,Spark原始样本生产任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   exit 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    echo "spark原始样本生产执行成功" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+## 3 特征分桶 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#beginStr:${today_early_1} endStr:${today} repartition:100 \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#filterNames:adid_,targeting_conversion_ \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#readPath:${originDataSavePath} \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#savePath:${bucketFeatureSavePath} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#if [ $? -ne 0 ]; then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   echo "Spark特征分桶处理任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   msg="广告特征分桶失败,Spark特征分桶处理任务执行失败" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   exit 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#   echo "spark特征分桶处理执行成功" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#fi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 # 4 模型训练 
			 |