|
@@ -23,64 +23,64 @@ export PATH=$SPARK_HOME/bin:$PATH
|
|
export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
|
|
export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
|
|
export JAVA_HOME=/usr/lib/jvm/java-1.8.0
|
|
export JAVA_HOME=/usr/lib/jvm/java-1.8.0
|
|
|
|
|
|
-# 1 判断依赖的数据表是否生产完成
|
|
|
|
-source /root/anaconda3/bin/activate py37
|
|
|
|
-while true; do
|
|
|
|
- python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
|
|
|
|
- if [ $python_return_code -eq 0 ]; then
|
|
|
|
- echo "Python程序返回0,退出循环。"
|
|
|
|
- break
|
|
|
|
- fi
|
|
|
|
- echo "Python程序返回非0值,等待五分钟后再次调用。"
|
|
|
|
- sleep 300
|
|
|
|
- current_hour=$(date +%H)
|
|
|
|
- current_minute=$(date +%M)
|
|
|
|
- if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
|
- echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
|
|
|
|
- msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
|
|
|
|
- /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
|
|
|
|
- exit 1
|
|
|
|
- fi
|
|
|
|
-done
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-# 2 原始特征生成
|
|
|
|
-/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
---class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
|
|
|
|
---master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
|
|
|
|
-./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
-tablePart:64 repartition:16 \
|
|
|
|
-beginStr:${today_early_1}00 endStr:${today}10 \
|
|
|
|
-savePath:${originDataSavePath} \
|
|
|
|
-table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
|
|
|
|
-idDefaultValue:0.01
|
|
|
|
-if [ $? -ne 0 ]; then
|
|
|
|
- echo "Spark原始样本生产任务执行失败"
|
|
|
|
- msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
|
|
|
|
- /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
|
|
|
|
- exit 1
|
|
|
|
-else
|
|
|
|
- echo "spark原始样本生产执行成功"
|
|
|
|
-fi
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-# 3 特征分桶
|
|
|
|
-/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
---class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
|
|
|
|
---master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
|
-./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
-beginStr:${today_early_1} endStr:${today} repartition:100 \
|
|
|
|
-filterNames:adid_,targeting_conversion_ \
|
|
|
|
-readPath:${originDataSavePath} \
|
|
|
|
-savePath:${bucketFeatureSavePath}
|
|
|
|
-if [ $? -ne 0 ]; then
|
|
|
|
- echo "Spark特征分桶处理任务执行失败"
|
|
|
|
- msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
|
|
|
|
- /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
|
|
|
|
- exit 1
|
|
|
|
-else
|
|
|
|
- echo "spark特征分桶处理执行成功"
|
|
|
|
-fi
|
|
|
|
|
|
+## 1 判断依赖的数据表是否生产完成
|
|
|
|
+#source /root/anaconda3/bin/activate py37
|
|
|
|
+#while true; do
|
|
|
|
+# python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
|
|
|
|
+# if [ $python_return_code -eq 0 ]; then
|
|
|
|
+# echo "Python程序返回0,退出循环。"
|
|
|
|
+# break
|
|
|
|
+# fi
|
|
|
|
+# echo "Python程序返回非0值,等待五分钟后再次调用。"
|
|
|
|
+# sleep 300
|
|
|
|
+# current_hour=$(date +%H)
|
|
|
|
+# current_minute=$(date +%M)
|
|
|
|
+# if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
|
+# echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
|
|
|
|
+# msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
|
|
|
|
+# /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
|
|
|
|
+# exit 1
|
|
|
|
+# fi
|
|
|
|
+#done
|
|
|
|
+#
|
|
|
|
+#
|
|
|
|
+## 2 原始特征生成
|
|
|
|
+#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
+#--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
|
|
|
|
+#--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
|
|
|
|
+#./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
+#tablePart:64 repartition:16 \
|
|
|
|
+#beginStr:${today_early_1}00 endStr:${today}10 \
|
|
|
|
+#savePath:${originDataSavePath} \
|
|
|
|
+#table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
|
|
|
|
+#idDefaultValue:0.01
|
|
|
|
+#if [ $? -ne 0 ]; then
|
|
|
|
+# echo "Spark原始样本生产任务执行失败"
|
|
|
|
+# msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
|
|
|
|
+# /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
|
|
|
|
+# exit 1
|
|
|
|
+#else
|
|
|
|
+# echo "spark原始样本生产执行成功"
|
|
|
|
+#fi
|
|
|
|
+#
|
|
|
|
+#
|
|
|
|
+## 3 特征分桶
|
|
|
|
+#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
+#--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
|
|
|
|
+#--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
|
+#./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
+#beginStr:${today_early_1} endStr:${today} repartition:100 \
|
|
|
|
+#filterNames:adid_,targeting_conversion_ \
|
|
|
|
+#readPath:${originDataSavePath} \
|
|
|
|
+#savePath:${bucketFeatureSavePath}
|
|
|
|
+#if [ $? -ne 0 ]; then
|
|
|
|
+# echo "Spark特征分桶处理任务执行失败"
|
|
|
|
+# msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
|
|
|
|
+# /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
|
|
|
|
+# exit 1
|
|
|
|
+#else
|
|
|
|
+# echo "spark特征分桶处理执行成功"
|
|
|
|
+#fi
|
|
|
|
|
|
|
|
|
|
# 4 模型训练
|
|
# 4 模型训练
|