فهرست منبع

feat:修改模型更新测试脚本

zhaohaipeng 4 ماه پیش
والد
کامیت
167c284637
1فایلهای تغییر یافته به همراه395 افزوده شده و 10 حذف شده
  1. 395 10
      ad/02_ad_model_update_test.sh

+ 395 - 10
ad/02_ad_model_update_test.sh

@@ -4,19 +4,404 @@ set -x
 export PATH=$SPARK_HOME/bin:$PATH
 export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
 export JAVA_HOME=/usr/lib/jvm/java-1.8.0
-export PREDICT_CACHE_PATH=/root/zhaohp/XGB/test/predict_cache/
-export SEGMENT_BASE_PATH=/dw/recommend/model/36_model_attachment_test/score_calibration_file
-
-
+export PREDICT_CACHE_PATH=/root/zhaohp/XGB/predict_cache/
+export SEGMENT_BASE_PATH=/dw/recommend/model/36_model_attachment/score_calibration_file
 
 sh_path=$(cd $(dirname $0); pwd)
 source ${sh_path}/00_common.sh
 
-online_model_predict_result_path=/dw/recommend/model/34_ad_predict_data/20241110_351_1000_1031_1106
-new_model_predict_result_path=/dw/recommend/model/34_ad_predict_data/20241110_351_1000_1103_1109
-predict_analyse_file_path=/root/zhaohp/XGB/test/predict_analyse_file/20241110_351_1000_analyse.txt
-calibration_file_path=/root/zhaohp/XGB/test/model_xgb_351_1000_v2_calibration.txt
+source /root/anaconda3/bin/activate py37
+
+
+# 全局常量
+LOG_PREFIX=广告模型训练任务
+HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
+TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4
+BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4
+TABLE=alg_recsys_ad_sample_all
+# 特征文件名
+feature_file=20240703_ad_feature_name.txt
+# 模型本地临时保存路径
+model_local_home=/root/zhaohp/XGB/
+
+# 模型HDFS保存路径,测试时修改为其他路径,避免影响线上
+MODEL_PATH=/dw/recommend/model/35_ad_model
+# 预测结果保存路径,测试时修改为其他路径,避免影响线上
+PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data
+# 模型OSS保存路径,测试时修改为其他路径,避免影响线上
+MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
+# 线上模型名,测试时修改为其他模型名,避免影响线上
+model_name=model_xgb_351_1000_v2
+# 线上校准文件名
+OSS_CALIBRATION_FILE_NAME=model_xgb_351_1000_v2_calibration
+# 用于存放一些临时的文件
+PREDICT_CACHE_PATH=/root/zhaohp/XGB/predict_cache
+
+
+# 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上
+model_path_file=${model_local_home}/online_model_path.txt
+# 获取当前是星期几,1表示星期一
+current_day_of_week="$(date +"%u")"
+
+# 任务开始时间
+start_time=$(date +%s)
+# 前一天
+today_early_1=20241218
+# 线上模型在HDFS中的路径
+online_model_path=`cat ${model_path_file}`
+# 训练用的数据路径
+train_data_path=""
+# 评估用的数据路径
+predict_date_path=""
+#评估结果保存路径
+new_model_predict_result_path=""
+# 模型保存路径
+model_save_path=""
+# 评测结果保存路径,后续需要根据此文件评估是否要更新模型
+predict_analyse_file_path=""
+# 校准文件保存路径
+calibration_file_path=""
+
+# 保存模型评估的分析结果
+old_incr_rate_avg=0
+new_incr_rate_avg=0
+# Top10的详情
+top10_msg=""
+# AUC值
+old_auc=0
+new_auc=0
+
+declare -A real_score_map
+declare -A old_score_map
+declare -A new_score_map
+
+# 校验命令的退出码
+check_run_status() {
+    local status=$1
+    local step_start_time=$2
+    local step_name=$3
+    local msg=$4
+
+    local step_end_time=$(date +%s)
+    local step_elapsed=$(($step_end_time - $step_start_time))
+
+    if [[ -n "${old_auc}" && "${old_auc}" != "0" ]]; then
+      msg+="\n\t - 老模型AUC: ${old_auc}"
+    fi
+    if [[ -n "${new_auc}" && "${new_auc}" != "0" ]]; then
+      msg+="\n\t - 新模型AUC: ${new_auc}"
+    fi
+
+
+    if [ ${status} -ne 0 ]; then
+        echo "${LOG_PREFIX} -- ${step_name}失败: 耗时 ${step_elapsed}"
+        local elapsed=$(($step_end_time - $start_time))
+        /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
+        exit 1
+    else
+        echo "${LOG_PREFIX} -- ${step_name}成功: 耗时 ${step_elapsed}"
+    fi
+}
+
+send_success_upload_msg(){ 
+  # 发送更新成功通知
+  local msg=" 广告模型文件更新完成"
+  msg+="\n\t - 老模型AUC: ${old_auc}"
+  msg+="\n\t - 新模型AUC: ${new_auc}"
+  msg+="\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}"
+  msg+="\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}"
+  msg+="\n\t - 模型在HDFS中的路径: ${model_save_path}"
+  msg+="\n\t - 模型上传OSS中的路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
+
+  local step_end_time=$(date +%s)
+  local elapsed=$((${step_end_time} - ${start_time}))
+
+  /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
+}
+
+init() {
+  
+  declare -a date_keys=()
+  local count=1
+  local current_data="$(date -d '1 days ago' +%Y%m%d)"
+  # 循环获取前 n 天的非节日日期
+  while [[ ${count} -le 7 ]]; do
+    date_key=$(date -d "${current_data}" +%Y%m%d)
+    # 判断是否是节日,并拼接训练数据路径
+    if [ $(is_not_holidays ${date_key}) -eq 1 ]; then
+
+      # 将 date_key 放入数组
+      date_keys+=("${date_key}")
+
+      if [[ -z ${train_data_path} ]]; then
+        train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
+      else
+        train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
+      fi 
+      count=$((count + 1))
+    else
+      echo "日期: ${date_key}是节日,跳过"
+    fi
+    current_data=$(date -d "${current_data} -1 day" +%Y%m%d)
+  done
+
+  last_index=$((${#date_keys[@]} - 1))
+  train_first_day=${date_keys[$last_index]}
+  train_last_day=${date_keys[0]}
+
+  model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
+  predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
+  new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${train_first_day: -4}_${train_last_day: -4}
+  online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${online_model_path: -9}
+  predict_analyse_file_path=${model_local_home}/predict_analyse_file/${today_early_1}_351_1000_analyse.txt
+  calibration_file_path=${model_local_home}/${OSS_CALIBRATION_FILE_NAME}.txt
+
+  echo "init param train_data_path: ${train_data_path}"
+  echo "init param predict_date_path: ${predict_date_path}"
+  echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
+  echo "init param online_model_predict_result_path: ${online_model_predict_result_path}"
+  echo "init param model_save_path: ${model_save_path}"
+  echo "init param online_model_path: ${online_model_path}"
+  echo "init param feature_file: ${feature_file}"
+  echo "init param model_name: ${model_name}"
+  echo "init param model_local_home: ${model_local_home}"
+  echo "init param model_oss_path: ${MODEL_OSS_PATH}"
+  echo "init param predict_analyse_file_path: ${predict_analyse_file_path}"
+  echo "init param calibration_file_path: ${calibration_file_path}"
+  echo "init param current_day_of_week: ${current_day_of_week}"
+
+  echo "当前Python环境安装的Python版本: $(python --version)"
+  echo "当前Python环境安装的三方包: $(python -m pip list)"
+}
+
+# 校验大数据任务是否执行完成
+check_ad_hive() {
+  local step_start_time=$(date +%s)
+  local max_hour=05
+  local max_minute=30
+  local elapsed=0
+  while true; do
+      local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
+
+      elapsed=$(($(date +%s) - ${step_start_time}))
+      if [ "${python_return_code}" -eq 0 ]; then
+          break
+      fi
+      echo "Python程序返回非0值,等待五分钟后再次调用。"
+      sleep 300
+      local current_hour=$(date +%H)
+      local current_minute=$(date +%M)
+      if (( ${current_hour} > ${max_hour} || ( ${current_hour} == ${max_hour} && ${current_minute} >= ${max_minute} ) )); then
+          local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
+          echo -e "${LOG_PREFIX} -- 大数据数据生产校验 -- ${msg}: 耗时 ${elapsed}"
+          /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}"
+          exit 1
+      fi
+  done
+  echo "${LOG_PREFIX} -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 ${elapsed}"
+}
+
+origin_data() {
+  (
+    source ${sh_path}/25_xgb_make_data_origin_bucket.sh
+    make_origin_data
+  )
+}
+
+bucket_feature() {
+  (
+    source ${sh_path}/25_xgb_make_data_origin_bucket.sh
+    make_bucket_feature
+  )
+}
+
+xgb_train() {
+  local step_start_time=$(date +%s)
+
+  /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
+  --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20240808 \
+  --master yarn --driver-memory 6G --executor-memory 10G --executor-cores 1 --num-executors 31 \
+  --conf spark.yarn.executor.memoryoverhead=2048 \
+  --conf spark.shuffle.service.enabled=true \
+  --conf spark.shuffle.service.port=7337 \
+  --conf spark.shuffle.consolidateFiles=true \
+  --conf spark.shuffle.manager=sort \
+  --conf spark.storage.memoryFraction=0.4 \
+  --conf spark.shuffle.memoryFraction=0.5 \
+  --conf spark.default.parallelism=200 \
+  /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
+  featureFile:20240703_ad_feature_name.txt \
+  trainPath:${train_data_path} \
+  testPath:${predict_date_path} \
+  savePath:${new_model_predict_result_path} \
+  modelPath:${model_save_path} \
+  eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
+
+  local return_code=$?
+  check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败"
+}
+
+calc_model_predict() {
+  local count=0
+  local max_line=10
+  local old_total_diff=0
+  local new_total_diff=0
+  top10_msg="| CID  | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |"
+  top10_msg+=" \n| ---- | --------- | -------- |"
+  while read -r line && [ ${count} -lt ${max_line} ]; do
+
+      # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
+      if [[ "${line}" == *"cid"* ]]; then
+          continue
+      fi
+
+      read -a numbers <<< "${line}"
+
+      # 分数分别保存
+      real_score_map[${numbers[0]}]=${numbers[3]}
+      old_score_map[${numbers[0]}]=${numbers[6]}
+      new_score_map[${numbers[0]}]=${numbers[7]}
+
+      # 拼接Top10详情的飞书消息
+      top10_msg="${top10_msg} \n| ${numbers[0]} | ${numbers[6]} | ${numbers[7]} | "
+
+      # 计算top10相对误差绝对值的均值
+      old_abs_score=$( echo "${numbers[6]} * ((${numbers[6]} >= 0) * 2 - 1)" | bc -l )
+      new_abs_score=$( echo "${numbers[7]} * ((${numbers[7]} >= 0) * 2 - 1)" | bc -l )
+
+      old_total_diff=$( echo "${old_total_diff} + ${old_abs_score}" | bc -l )
+      new_total_diff=$( echo "${new_total_diff} + ${new_abs_score}" | bc -l )
+
+      count=$((${count} + 1))
+
+  done < "${predict_analyse_file_path}"
+
+  local return_code=$?
+  check_run_status ${return_code} ${step_start_time} "计算Top10差异" "计算Top10差异异常"
+
+  old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
+  check_run_status $? ${step_start_time} "计算老模型Top10差异" "计算老模型Top10差异异常"
+
+
+  new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
+  check_run_status $? ${step_start_time} "计算新模型Top10差异" "计算新模型Top10差异异常"
+
+  echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
+  echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
+  echo "新老模型分数对比: "
+  for cid in "${!new_score_map[@]}"; do
+    echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}"
+  done
+}
+
+calc_auc() {
+  old_auc=`cat ${PREDICT_CACHE_PATH}/old_1.txt | /root/sunmingze/AUC/AUC`
+  new_auc=`cat ${PREDICT_CACHE_PATH}/new_1.txt | /root/sunmingze/AUC/AUC`
+}
+
+model_predict() {
+
+  # 线上模型评估最新的数据
+  local step_start_time=$(date +%s)
+  /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
+  --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
+  --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 30 \
+  --conf spark.yarn.executor.memoryoverhead=1024 \
+  --conf spark.shuffle.service.enabled=true \
+  --conf spark.shuffle.service.port=7337 \
+  --conf spark.shuffle.consolidateFiles=true \
+  --conf spark.shuffle.manager=sort \
+  --conf spark.storage.memoryFraction=0.4 \
+  --conf spark.shuffle.memoryFraction=0.5 \
+  --conf spark.default.parallelism=200 \
+  /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
+  featureFile:20240703_ad_feature_name.txt \
+  testPath:${predict_date_path} \
+  savePath:${online_model_predict_result_path} \
+  modelPath:${online_model_path}
+
+  local return_code=$?
+  check_run_status ${return_code} ${step_start_time} "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败"
+
+  # 结果分析
+  local python_return_code=$(python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path})
+  check_run_status ${python_return_code} ${step_start_time} "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败"
+
+  calc_model_predict
+
+  calc_auc
+
+  if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then 
+    echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
+    # check_run_status 1 ${step_start_time} "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
+    # exit 1
+  fi 
+
+
+  # 对比两个模型的差异
+  score_diff=$( echo "${new_incr_rate_avg} - ${old_incr_rate_avg}" | bc -l )
+  if (( $(echo "${score_diff} > 0.050000" | bc -l ) ));then 
+    echo "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查"
+    # check_run_status 1 ${step_start_time} "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05"
+    # exit 1
+  fi 
+
+}
+
+model_upload_oss() {
+  local step_start_time=$(date +%s)
+
+  (
+    cd ${model_local_home}
+
+    ${HADOOP} fs -get ${model_save_path} ${model_name}
+    if [ ! -d ${model_name} ]; then
+      echo "从HDFS下载模型失败"
+      check_run_status 1 ${step_start_time} "HDFS下载模型任务" "HDFS下载模型失败" 
+      exit 1 
+    fi
+
+    tar -czvf ${model_name}.tar.gz -C ${model_name} .
+
+    rm -rf ${model_name}.tar.gz.crc
+
+    # 从OSS中移除模型文件和校准文件
+    ${HADOOP} fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz ${MODEL_OSS_PATH}/${OSS_CALIBRATION_FILE_NAME}.txt
+    
+    # 将模型文件和校准文件推送到OSS上
+    ${HADOOP} fs -put ${model_name}.tar.gz ${OSS_CALIBRATION_FILE_NAME}.txt ${MODEL_OSS_PATH}
+    local return_code=$?
+    check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
+
+    echo ${model_save_path} > ${model_path_file}
+
+    # 
+    rm -f ./${model_name}.tar.gz
+    rm -rf ./${model_name}
+    rm -rf ${OSS_CALIBRATION_FILE_NAME}.txt
+  )
+
+  local return_code=$?
+  check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
+
+  local step_end_time=$(date +%s)
+  local elapsed=$((${step_end_time} - ${start_time}))
+  echo -e "${LOG_PREFIX} -- 模型更新完成 -- 模型更新成功: 耗时 ${elapsed}"
+  
+  send_success_upload_msg
+}
+
+# 主方法
+main() {
+  init
+
+  xgb_train
+
+  model_predict
+
+  model_upload_oss
+
+}
 
 
-local python_return_code=$(python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path})
-echo "${python_return_code}"
+main