Prechádzať zdrojové kódy

feat:添加批量计算AUC脚本

zhaohaipeng 9 mesiacov pred
rodič
commit
13dc10d127

+ 0 - 209
ad/02_ad_model_update_twice_daily_v2.sh

@@ -1,209 +0,0 @@
-#!/bin/sh
-set -x
-
-
-export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
-export PATH=$SPARK_HOME/bin:$PATH
-export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
-export JAVA_HOME=/usr/lib/jvm/java-1.8.0
-
-source /root/anaconda3/bin/activate py37
-
-# 全局常量
-originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto_test
-bucketFeatureSavePathHome=/dw/recommend/model/33_ad_train_data_v3_auto_test
-model_name=model_bkb8_v3_test
-LAST_MODEL_HOME=/root/zhaohp/model_online_test
-
-MODEL_HOME=/root/zhaohp/recommend-emr-dataprocess/model
-OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model
-
-PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
-HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
-FM_HOME=/root/sunmingze/alphaFM
-
-today="$(date +%Y%m%d)"
-today_early_1="$(date -d '1 days ago' +%Y%m%d)"
-
-start_time=$(date +%s)
-elapsed=0
-LOG_PREFIX=广告模型自动更新任务
-
-# 训练和预测数据分区
-train_begin_str=''
-train_end_str=''
-predict_begin_str=''
-predict_end_str=''
-
-# HDFS保存数据的目录
-trainBucketFeaturePath=${bucketFeatureSavePathHome}
-predictBucketFeaturePath=${bucketFeatureSavePathHome}
-
-local_model_file_path=${MODEL_HOME}/${model_name}.txt
-local_change_model_file_path=${MODEL_HOME}/${model_name}_change.txt
-
-max_hour=21
-max_minute=20
-
-# 全局初始化
-global_init() {
-    # 获取当前小时,确定需要使用的数据分区范围
-    local current_hour="$(date +%H)"
-    # if [ $current_hour -lt 08 ]; then
-        train_begin_str=${today_early_1}14
-        train_end_str=${today_early_1}21
-        predict_begin_str=${today_early_1}22
-        predict_end_str=${today_early_1}23
-
-        trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/train
-        predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/predict
-
-        local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt
-        local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt
-        max_hour=12
-    # elif [ $current_hour -ge 20 ]; then 
-    #     train_begin_str=${today_early_1}22
-    #     train_end_str=${today}13
-    #     predict_begin_str=${today}14
-    #     predict_end_str=${today}15
-
-    #     trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/train
-    #     predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/predict
-
-    #     local_model_file_path=${MODEL_HOME}/${train_end_str}.txt
-    #     local_change_model_file_path=${MODEL_HOME}/${train_end_str}_change.txt
-    #     max_hour=21
-
-    # else
-    #     echo "当前时间段异常: 退出任务"
-    #     exit 1
-    # fi
-
-    # 删除HDFS目录,保证本次任务运行时目录干净
-    $HADOOP fs -rm -r -skipTrash ${trainBucketFeaturePath}
-    $HADOOP fs -rm -r -skipTrash ${predictBucketFeaturePath}
-
-    echo "全局变量初始化化: "
-    echo "  train_begin_str=${train_begin_str}"
-    echo "  train_end_str=${train_end_str}"
-    echo "  predict_begin_str=${predict_begin_str}"
-    echo "  predict_end_str=${predict_end_str}"
-    echo "  originDataSavePath=${originDataSavePath}"
-    echo "  trainBucketFeaturePath=${trainBucketFeaturePath}"
-    echo "  predictBucketFeaturePath=${predictBucketFeaturePath}"
-    echo "  local_model_file_path=${local_model_file_path}"
-    echo "  local_change_model_file_path=${local_change_model_file_path}"
-    echo "  max_hour=${max_hour}"
-
-}
-
-# 校验命令的退出码
-check_run_status() {
-    local status=$1
-    local step_start_time=$2
-    local step_name=$3
-
-    local step_end_time=$(date +%s)
-    local step_elapsed=$(($step_end_time - $step_start_time))
-
-    if [ $status -ne 0 ]; then
-        echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
-        local elapsed=$(($step_end_time - $start_time))
-        # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
-        exit 1
-    else
-        echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
-    fi
-}
-
-# 校验大数据任务是否执行完成
-check_ad_hive() {
-    local step_start_time=$(date +%s)
-    while true; do
-        local python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${predict_end_str:0:8} --hh ${predict_end_str:8:10})
-
-        local step_end_time=$(date +%s)
-        local elapsed=$(($step_end_time - $step_start_time))
-        if [ "$python_return_code" -eq 0 ]; then
-            break
-        fi
-        echo "Python程序返回非0值,等待五分钟后再次调用。"
-        sleep 300
-        local current_hour=$(date +%H)
-        local current_minute=$(date +%M)
-        if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
-            local msg="大数据数据生产校验失败, 分区: ${today}10"
-            echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
-            # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
-            exit 1
-        fi
-    done
-    echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
-
-}
-
-# 原始特征生产
-make_origin_data() {
-    local step_start_time=$(date +%s)
-    /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
-    --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
-    --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
-    ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
-    tablePart:64 repartition:16 \
-    beginStr:${train_begin_str} endStr:${predict_end_str} \
-    savePath:${originDataSavePath} \
-    table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
-    idDefaultValue:0.01
-
-    local return_code=$?
-    check_run_status $return_code $step_start_time "Spark原始样本生产任务"
-
-}
-
-
-
-# 特征分桶,训练用的数据和预测用的数据分不同的目录
-make_bucket_feature() {
-    local step_start_time=$(date +%s)
-    # 训练用的数据
-    /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
-    --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
-    --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
-    ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
-    beginStr:${train_begin_str} endStr:${train_end_str} repartition:100 \
-    filterNames:adid_,targeting_conversion_ \
-    readPath:${originDataSavePath} \
-    savePath:${trainBucketFeaturePath}
-
-    local return_code=$?
-    check_run_status $return_code $step_start_time "Spark特征分桶任务: 训练数据分桶"
-    
-    # 预测用的数据
-    /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
-    --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
-    --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
-    ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
-    beginStr:${predict_begin_str} endStr:${predict_end_str} repartition:100 \
-    filterNames:adid_,targeting_conversion_ \
-    readPath:${originDataSavePath} \
-    savePath:${predictBucketFeaturePath}
-
-    return_code=$?
-    check_run_status $return_code $step_start_time "Spark特征分桶任务: 预测数据分桶"
-}
-
-main() {
-
-    global_init
-
-    check_ad_hive
-
-    make_origin_data
-
-    make_bucket_feature
-
-}
-
-
-main
-

+ 1 - 1
ad/22_ad__model_add_dt_train_predict_auc.sh → ad/21_ad_model_add_dt_train_predict_auc.sh

@@ -1,6 +1,6 @@
 #!/bin/sh
 
-# 模型增量训练,预测,计算AUC脚本
+# 指定基础模型,模型增量训练,预测,计算AUC脚本
 
 set -x
 

+ 62 - 0
ad/22_ad_model_predict_auc.sh

@@ -0,0 +1,62 @@
+#!/bin/sh
+
+# 训练新模型,并使用后面的数据计算AUC,评估模型效果
+
+set -x
+
+begin_date=$1
+end_date=$2
+model_name=$3
+train_dim=$4
+predict_dim=$5
+
+PROJECT_HOME=/root/zhaohp/20240723
+HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
+HDFS_TRAIN_DATE_PATH=/dw/recommend/model/33_ad_train_data_v4_idn1
+MODEL_PATH=${PROJECT_HOME}/model
+PREDICT_PATH=${PROJECT_HOME}/predict
+
+FM_TRAIN=/root/sunmingze/alphaFM/bin/fm_train
+FM_PREDICT=/root/sunmingze/alphaFM/bin/fm_predict
+
+train_date=$begin_date
+
+# 计算模型的AUC,从训练日期的后一天到参数的end_date
+predict_auc() {
+    echo -e "\t==================== 开始预测 $train_date 模型 ===================="
+
+    predict_date=$(date -d "$train_date +1 day" +%Y%m%d)
+    predict_end_date=$(date -d "$end_date +1 day" +%Y%m%d)
+    while [ "$predict_date" != "$predict_end_date" ]; do
+
+        $HADOOP fs -text ${HDFS_TRAIN_DATE_PATH}/${predict_date}/* | ${FM_PREDICT} -m ${MODEL_PATH}/${model_name}_${train_date}.txt -dim ${predict_dim} -core 8 -out ${PREDICT_PATH}/${model_name}_${train_date}.txt
+        auc=`cat ${PREDICT_PATH}/${model_name}_${train_date}.txt | /root/sunmingze/AUC/AUC`
+
+        echo "模型训练日期: ${train_date}, 模型预测日期: ${predict_date}, AUC: ${auc}, 模型路径: ${MODEL_PATH}/${model_name}_${train_date}.txt"
+
+        predict_date=$(date -d "$predict_date +1 day" +%Y%m%d)
+
+    done
+
+    echo -e "\n\t==================== 预测 $train_date 模型结束 ===================="
+
+}
+main() {
+
+    # 增量训练模型
+    while [ "$train_date" != "$end_date" ]; do
+        echo "==================== 开始训练 $train_date 模型 ===================="
+
+        predict_auc
+
+        train_date=$(date -d "$train_date +1 day" +%Y%m%d)
+
+        echo "==================== 训练 $train_date 模型结束 ===================="
+        echo -e "\n\n\n\n\n\n"
+    done
+
+}
+
+main
+
+