123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- #!/bin/sh
- set -x
- export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
- export PATH=$SPARK_HOME/bin:$PATH
- export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
- export JAVA_HOME=/usr/lib/jvm/java-1.8.0
- source /root/anaconda3/bin/activate py37
- # 全局常量
- originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto_test
- bucketFeatureSavePathHome=/dw/recommend/model/33_ad_train_data_v3_auto_test
- model_name=model_bkb8_v3_test
- LAST_MODEL_HOME=/root/zhaohp/model_online_test
- MODEL_HOME=/root/zhaohp/recommend-emr-dataprocess/model
- OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model
- PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
- HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
- FM_HOME=/root/sunmingze/alphaFM
- today="$(date +%Y%m%d)"
- today_early_1="$(date -d '1 days ago' +%Y%m%d)"
- start_time=$(date +%s)
- elapsed=0
- LOG_PREFIX=广告模型自动更新任务
- # 训练和预测数据分区
- train_begin_str=''
- train_end_str=''
- predict_begin_str=''
- predict_end_str=''
- # HDFS保存数据的目录
- trainBucketFeaturePath=${bucketFeatureSavePathHome}
- predictBucketFeaturePath=${bucketFeatureSavePathHome}
- local_model_file_path=${MODEL_HOME}/${model_name}.txt
- local_change_model_file_path=${MODEL_HOME}/${model_name}_change.txt
- max_hour=21
- max_minute=20
- # 全局初始化
- global_init() {
- # 获取当前小时,确定需要使用的数据分区范围
- local current_hour="$(date +%H)"
- # if [ $current_hour -lt 08 ]; then
- train_begin_str=${today_early_1}14
- train_end_str=${today_early_1}21
- predict_begin_str=${today_early_1}22
- predict_end_str=${today_early_1}23
- trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/train
- predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/predict
- local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt
- local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt
- max_hour=12
- # elif [ $current_hour -ge 20 ]; then
- # train_begin_str=${today_early_1}22
- # train_end_str=${today}13
- # predict_begin_str=${today}14
- # predict_end_str=${today}15
- # trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/train
- # predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/predict
- # local_model_file_path=${MODEL_HOME}/${train_end_str}.txt
- # local_change_model_file_path=${MODEL_HOME}/${train_end_str}_change.txt
- # max_hour=21
- # else
- # echo "当前时间段异常: 退出任务"
- # exit 1
- # fi
- # 删除HDFS目录,保证本次任务运行时目录干净
- $HADOOP fs -rm -r -skipTrash ${trainBucketFeaturePath}
- $HADOOP fs -rm -r -skipTrash ${predictBucketFeaturePath}
- echo "全局变量初始化化: "
- echo " train_begin_str=${train_begin_str}"
- echo " train_end_str=${train_end_str}"
- echo " predict_begin_str=${predict_begin_str}"
- echo " predict_end_str=${predict_end_str}"
- echo " originDataSavePath=${originDataSavePath}"
- echo " trainBucketFeaturePath=${trainBucketFeaturePath}"
- echo " predictBucketFeaturePath=${predictBucketFeaturePath}"
- echo " local_model_file_path=${local_model_file_path}"
- echo " local_change_model_file_path=${local_change_model_file_path}"
- echo " max_hour=${max_hour}"
- }
- # 校验命令的退出码
- check_run_status() {
- local status=$1
- local step_start_time=$2
- local step_name=$3
- local step_end_time=$(date +%s)
- local step_elapsed=$(($step_end_time - $step_start_time))
- if [ $status -ne 0 ]; then
- echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
- local elapsed=$(($step_end_time - $start_time))
- # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- else
- echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
- fi
- }
- # 校验大数据任务是否执行完成
- check_ad_hive() {
- local step_start_time=$(date +%s)
- while true; do
- local python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${predict_end_str:0:8} --hh ${predict_end_str:8:10})
- local step_end_time=$(date +%s)
- local elapsed=$(($step_end_time - $step_start_time))
- if [ "$python_return_code" -eq 0 ]; then
- break
- fi
- echo "Python程序返回非0值,等待五分钟后再次调用。"
- sleep 300
- local current_hour=$(date +%H)
- local current_minute=$(date +%M)
- if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
- local msg="大数据数据生产校验失败, 分区: ${today}10"
- echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
- # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- done
- echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
- }
- # 原始特征生产
- make_origin_data() {
- local step_start_time=$(date +%s)
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
- --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- tablePart:64 repartition:16 \
- beginStr:${train_begin_str} endStr:${predict_end_str} \
- savePath:${originDataSavePath} \
- table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
- idDefaultValue:0.01
- local return_code=$?
- check_run_status $return_code $step_start_time "Spark原始样本生产任务"
- }
- # 特征分桶,训练用的数据和预测用的数据分不同的目录
- make_bucket_feature() {
- local step_start_time=$(date +%s)
- # 训练用的数据
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
- --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- beginStr:${train_begin_str} endStr:${train_end_str} repartition:100 \
- filterNames:adid_,targeting_conversion_ \
- readPath:${originDataSavePath} \
- savePath:${trainBucketFeaturePath}
- local return_code=$?
- check_run_status $return_code $step_start_time "Spark特征分桶任务: 训练数据分桶"
-
- # 预测用的数据
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
- --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- beginStr:${predict_begin_str} endStr:${predict_end_str} repartition:100 \
- filterNames:adid_,targeting_conversion_ \
- readPath:${originDataSavePath} \
- savePath:${predictBucketFeaturePath}
- return_code=$?
- check_run_status $return_code $step_start_time "Spark特征分桶任务: 预测数据分桶"
- }
- main() {
- global_init
- check_ad_hive
- make_origin_data
- make_bucket_feature
- }
- main
|