|
@@ -5,6 +5,8 @@ set -ex
|
|
|
|
|
|
# 原始数据table name
|
|
|
table='alg_recsys_sample_all'
|
|
|
+today="$(date +%Y%m%d)"
|
|
|
+today_early_3="$(date -d '3 days ago' +%Y%m%d)"
|
|
|
#table='alg_recsys_sample_all_test'
|
|
|
# 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
|
|
|
begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
|
|
@@ -15,77 +17,123 @@ endHhStr=23
|
|
|
originDataPath=/dw/recommend/model/13_sample_data/
|
|
|
valueDataPath=/dw/recommend/model/14_feature_data/
|
|
|
bucketDataPath=/dw/recommend/model/16_train_data/
|
|
|
+MODEL_PATH=/root/joe/recommend-emr-dataprocess/rov/model
|
|
|
+PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
|
|
|
+model_name=akaqjl8
|
|
|
+FM_HOME=/root/sunmingze/alphaFM
|
|
|
|
|
|
-# 0 判断上游表是否生产完成,最长等待到12点
|
|
|
-# shellcheck disable=SC2039
|
|
|
-source /root/anaconda3/bin/activate py37
|
|
|
-# shellcheck disable=SC2154
|
|
|
-echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
|
|
|
-while true; do
|
|
|
- python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
|
|
|
- echo "python 返回值:${python_return_code}"
|
|
|
- if [ $python_return_code -eq 0 ]; then
|
|
|
- echo "Python程序返回0,校验存在数据,退出循环。"
|
|
|
- break
|
|
|
- fi
|
|
|
- echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
|
|
|
- sleep 300
|
|
|
- current_hour=$(date +%H)
|
|
|
- current_minute=$(date +%M)
|
|
|
- # shellcheck disable=SC2039
|
|
|
- if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
- echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
|
|
|
- exit 1
|
|
|
- fi
|
|
|
-done
|
|
|
|
|
|
-# 1 生产原始数据
|
|
|
-echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
|
|
|
-/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
---class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
|
|
|
---master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
|
|
|
-../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
-tablePart:64 repartition:32 \
|
|
|
-beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
|
|
|
-savePath:${originDataPath} \
|
|
|
-table:${table}
|
|
|
+## 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
|
|
|
+#online_model=${MODEL_PATH}/model_online.txt
|
|
|
+#$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
|
|
|
+#$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
|
|
|
+#
|
|
|
+## 1 对比auc数据判断是否更新线上模型
|
|
|
+#online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
|
|
|
+#new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
|
|
|
+#if [ "$online_auc" \< "$new_auc" ]; then
|
|
|
+# echo "推荐新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
+# /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
+# # todo 模型格式转换
|
|
|
+#
|
|
|
+# # todo 模型文件上传OSS
|
|
|
+#
|
|
|
+# # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
|
|
|
+#else
|
|
|
+# echo "推荐新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
+# /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
+## exit 1
|
|
|
+#fi
|
|
|
+#
|
|
|
+#
|
|
|
+## 2 判断上游表是否生产完成,最长等待到12点
|
|
|
+## shellcheck disable=SC2039
|
|
|
+#source /root/anaconda3/bin/activate py37
|
|
|
+## shellcheck disable=SC2154
|
|
|
+#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
|
|
|
+#while true; do
|
|
|
+# python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
|
|
|
+# echo "python 返回值:${python_return_code}"
|
|
|
+# if [ $python_return_code -eq 0 ]; then
|
|
|
+# echo "Python程序返回0,校验存在数据,退出循环。"
|
|
|
+# break
|
|
|
+# fi
|
|
|
+# echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
|
|
|
+# sleep 300
|
|
|
+# current_hour=$(date +%H)
|
|
|
+# current_minute=$(date +%M)
|
|
|
+# # shellcheck disable=SC2039
|
|
|
+# if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
+# echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
|
|
|
+# exit 1
|
|
|
+# fi
|
|
|
+#done
|
|
|
+#
|
|
|
+## 3 生产原始数据
|
|
|
+#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
|
|
|
+#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
+#--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
|
|
|
+#--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
|
|
|
+#../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
+#tablePart:64 repartition:32 \
|
|
|
+#beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
|
|
|
+#savePath:${originDataPath} \
|
|
|
+#table:${table}
|
|
|
+#if [ $? -ne 0 ]; then
|
|
|
+# echo "Spark原始样本生产任务执行失败"
|
|
|
+# exit 1
|
|
|
+#else
|
|
|
+# echo "spark原始样本生产执行成功"
|
|
|
+#fi
|
|
|
+#
|
|
|
+#
|
|
|
+## 4 特征值拼接
|
|
|
+#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
|
|
|
+#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
+#--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
|
|
|
+#--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
|
|
|
+#../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
+#readPath:${originDataPath} \
|
|
|
+#savePath:${valueDataPath} \
|
|
|
+#beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
+#if [ $? -ne 0 ]; then
|
|
|
+# echo "Spark特征值拼接处理任务执行失败"
|
|
|
+# exit 1
|
|
|
+#else
|
|
|
+# echo "spark特征值拼接处理执行成功"
|
|
|
+#fi
|
|
|
+#
|
|
|
+## 5 特征分桶
|
|
|
+#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
|
|
|
+#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
+#--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
|
|
|
+#--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
+#../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
+#readPath:${valueDataPath} \
|
|
|
+#savePath:${bucketDataPath} \
|
|
|
+#beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
+#if [ $? -ne 0 ]; then
|
|
|
+# echo "Spark特征分桶处理任务执行失败"
|
|
|
+# exit 1
|
|
|
+#else
|
|
|
+# echo "spark特征分桶处理执行成功"
|
|
|
+#fi
|
|
|
+#
|
|
|
+## 6 模型训练
|
|
|
+#$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -core 8
|
|
|
+#if [ $? -ne 0 ]; then
|
|
|
+# echo "模型训练失败"
|
|
|
+# /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
|
|
|
+# exit 1
|
|
|
+#fi
|
|
|
+
|
|
|
+$HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 1,1,8 -core 8
|
|
|
if [ $? -ne 0 ]; then
|
|
|
- echo "Spark原始样本生产任务执行失败"
|
|
|
+ echo "模型训练失败"
|
|
|
+ /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
|
|
|
exit 1
|
|
|
-else
|
|
|
- echo "spark原始样本生产执行成功"
|
|
|
fi
|
|
|
|
|
|
|
|
|
-# 2 特征值拼接
|
|
|
-echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
|
|
|
-/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
---class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
|
|
|
---master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
|
|
|
-../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
-readPath:${originDataPath} \
|
|
|
-savePath:${valueDataPath} \
|
|
|
-beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
-if [ $? -ne 0 ]; then
|
|
|
- echo "Spark特征值拼接处理任务执行失败"
|
|
|
- exit 1
|
|
|
-else
|
|
|
- echo "spark特征值拼接处理执行成功"
|
|
|
-fi
|
|
|
|
|
|
-# 3 特征分桶
|
|
|
-echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
|
|
|
-/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
---class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
|
|
|
---master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
-../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
-readPath:${valueDataPath} \
|
|
|
-savePath:${bucketDataPath} \
|
|
|
-beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
-if [ $? -ne 0 ]; then
|
|
|
- echo "Spark特征分桶处理任务执行失败"
|
|
|
- exit 1
|
|
|
-else
|
|
|
- echo "spark特征分桶处理执行成功"
|
|
|
-fi
|
|
|
|