handle_rov.sh 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. #!/bin/sh
  2. set -ex
  3. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  4. # 原始数据table name
  5. table='alg_recsys_sample_all'
  6. today="$(date +%Y%m%d)"
  7. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  8. #table='alg_recsys_sample_all_test'
  9. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  10. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  11. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  12. beginHhStr=00
  13. endHhStr=23
  14. # 各节点产出hdfs文件绝对路径
  15. originDataPath=/dw/recommend/model/13_sample_data/
  16. valueDataPath=/dw/recommend/model/14_feature_data/
  17. bucketDataPath=/dw/recommend/model/16_train_data/
  18. MODEL_PATH=/root/joe/recommend-emr-dataprocess/rov/model
  19. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  20. model_name=akaqjl8
  21. FM_HOME=/root/sunmingze/alphaFM
  22. ## 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
  23. #online_model=${MODEL_PATH}/model_online.txt
  24. #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  25. #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  26. #
  27. ## 1 对比auc数据判断是否更新线上模型
  28. #online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  29. #new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  30. #if [ "$online_auc" \< "$new_auc" ]; then
  31. # echo "推荐新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  32. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  33. # # todo 模型格式转换
  34. #
  35. # # todo 模型文件上传OSS
  36. #
  37. # # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
  38. #else
  39. # echo "推荐新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  40. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  41. ## exit 1
  42. #fi
  43. #
  44. #
  45. ## 2 判断上游表是否生产完成,最长等待到12点
  46. ## shellcheck disable=SC2039
  47. #source /root/anaconda3/bin/activate py37
  48. ## shellcheck disable=SC2154
  49. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
  50. #while true; do
  51. # python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
  52. # echo "python 返回值:${python_return_code}"
  53. # if [ $python_return_code -eq 0 ]; then
  54. # echo "Python程序返回0,校验存在数据,退出循环。"
  55. # break
  56. # fi
  57. # echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
  58. # sleep 300
  59. # current_hour=$(date +%H)
  60. # current_minute=$(date +%M)
  61. # # shellcheck disable=SC2039
  62. # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  63. # echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  64. # exit 1
  65. # fi
  66. #done
  67. #
  68. ## 3 生产原始数据
  69. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
  70. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  71. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
  72. #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  73. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  74. #tablePart:64 repartition:32 \
  75. #beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
  76. #savePath:${originDataPath} \
  77. #table:${table}
  78. #if [ $? -ne 0 ]; then
  79. # echo "Spark原始样本生产任务执行失败"
  80. # exit 1
  81. #else
  82. # echo "spark原始样本生产执行成功"
  83. #fi
  84. #
  85. #
  86. ## 4 特征值拼接
  87. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
  88. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  89. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
  90. #--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
  91. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  92. #readPath:${originDataPath} \
  93. #savePath:${valueDataPath} \
  94. #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  95. #if [ $? -ne 0 ]; then
  96. # echo "Spark特征值拼接处理任务执行失败"
  97. # exit 1
  98. #else
  99. # echo "spark特征值拼接处理执行成功"
  100. #fi
  101. #
  102. ## 5 特征分桶
  103. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
  104. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  105. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
  106. #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  107. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  108. #readPath:${valueDataPath} \
  109. #savePath:${bucketDataPath} \
  110. #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  111. #if [ $? -ne 0 ]; then
  112. # echo "Spark特征分桶处理任务执行失败"
  113. # exit 1
  114. #else
  115. # echo "spark特征分桶处理执行成功"
  116. #fi
  117. #
  118. ## 6 模型训练
  119. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -core 8
  120. #if [ $? -ne 0 ]; then
  121. # echo "模型训练失败"
  122. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
  123. # exit 1
  124. #fi
  125. $HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 1,1,8 -core 8
  126. if [ $? -ne 0 ]; then
  127. echo "模型训练失败"
  128. /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
  129. exit 1
  130. fi