|
@@ -0,0 +1,103 @@
|
|
|
+import warnings
|
|
|
+
|
|
|
+warnings.filterwarnings("ignore")
|
|
|
+import os
|
|
|
+import pandas as pd
|
|
|
+import gc
|
|
|
+import math
|
|
|
+import numpy as np
|
|
|
+import time
|
|
|
+import lightgbm as lgb
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.model_selection import StratifiedKFold
|
|
|
+from sklearn.metrics import mean_absolute_percentage_error, r2_score
|
|
|
+from sklearn import metrics
|
|
|
+import pickle
|
|
|
+from sklearn.metrics import mean_squared_error
|
|
|
+import seaborn as sns
|
|
|
+import matplotlib.pylab as plt
|
|
|
+from odps import ODPS
|
|
|
+from odps.df import DataFrame as odpsdf
|
|
|
+from datetime import datetime as dt
|
|
|
+import datetime
|
|
|
+import process_feature
|
|
|
+import _pickle as cPickle
|
|
|
+
|
|
|
+def getRovfeaturetable(dt, table):
|
|
|
+ odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'usercdm',
|
|
|
+ endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
|
|
|
+ read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
|
|
|
+
|
|
|
+ featureArray = []
|
|
|
+ for record in odps.read_table(table, partition='dt=%s' % dt):
|
|
|
+ valueFeature = {}
|
|
|
+ for i in process_feature.featurename:
|
|
|
+ if i == 'dt':
|
|
|
+ valueFeature[i] = dt
|
|
|
+ else:
|
|
|
+ valueFeature[i] = record[i]
|
|
|
+ featureArray.append(valueFeature)
|
|
|
+ featureArray = pd.DataFrame(featureArray)
|
|
|
+ print(dt, table, 'feature table finish')
|
|
|
+ return featureArray
|
|
|
+
|
|
|
+def getdatasample(date, max_range, table):
|
|
|
+ new_date = dt.strptime(date, '%Y%m%d')
|
|
|
+ datelist = []
|
|
|
+ testlist = []
|
|
|
+ for i in range(0, max_range):
|
|
|
+ delta = datetime.timedelta(days=i)
|
|
|
+ tar_dt = new_date - delta
|
|
|
+ datelist.append(tar_dt.strftime("%Y%m%d"))
|
|
|
+ for tm in datelist:
|
|
|
+ testlist.append(getRovfeaturetable(tm, table))
|
|
|
+ data = pd.concat(testlist)
|
|
|
+ data.reset_index(inplace=True)
|
|
|
+ data = data.drop(axis=1, columns='index')
|
|
|
+ return data
|
|
|
+
|
|
|
+def clean_data(df):
|
|
|
+ y = df['futre7dayreturn']
|
|
|
+ df_vids = df['videoid']
|
|
|
+
|
|
|
+ x = df.drop(['videoid', 'videotags', 'videotitle', 'videodescr', 'videodistribute_title', 'videoallwords', 'words_without_tags'])
|
|
|
+
|
|
|
+ x = df.drop(['futr5viewcount', 'futr5returncount', 'futre7dayreturn'])
|
|
|
+ return x, y , df_vids
|
|
|
+
|
|
|
+def train(x,y):
|
|
|
+ X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
|
|
|
+ params = {
|
|
|
+ "objective": "regression",
|
|
|
+ "metric": "rmse",
|
|
|
+ "num_leaves": 30,
|
|
|
+ "learning_rate": 0.1,
|
|
|
+ "bagging_fraction": 0.7,
|
|
|
+ "feature_fraction": 0.7,
|
|
|
+ "bagging_frequency": 5,
|
|
|
+ "bagging_seed": 2018,
|
|
|
+ "verbosity": -1
|
|
|
+ }
|
|
|
+ lgtrain = lgb.Dataset(X_train, label=y_train)
|
|
|
+ lgval = lgb.Dataset(X_test, label=y_test)
|
|
|
+ evals_result = {}
|
|
|
+ model = lgb.train(params, lgtrain, 10000, valid_sets=[lgval], early_stopping_rounds=100, verbose_eval=20,
|
|
|
+ evals_result=evals_result)
|
|
|
+
|
|
|
+ pred_test_y = model.predict(X_test, num_iteration=model.best_iteration)
|
|
|
+ err_mape = mean_absolute_percentage_error(y_test, pred_test_y)
|
|
|
+ r2 = r2_score(y_test, pred_test_y)
|
|
|
+ print('err_mape', err_mape)
|
|
|
+ print('r2', r2)
|
|
|
+
|
|
|
+ return pred_test_y, model, evals_result
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ with open(r"train_data.pickle", "rb") as input_file:
|
|
|
+ train_data = cPickle.load(input_file)
|
|
|
+ with open(r"predict_data.pickle", "rb") as input_file:
|
|
|
+ predict_data = cPickle.load(input_file)
|
|
|
+
|
|
|
+
|
|
|
+ x,y,_ = clean_data(train_data)
|
|
|
+ train(x, y)
|