123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import warnings
- warnings.filterwarnings("ignore")
- import os
- import pandas as pd
- import gc
- import math
- import numpy as np
- import time
- import lightgbm as lgb
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import StratifiedKFold
- from sklearn.metrics import mean_absolute_percentage_error, r2_score
- from sklearn import metrics
- import pickle
- from sklearn.metrics import mean_squared_error
- import seaborn as sns
- import matplotlib.pylab as plt
- from odps import ODPS
- from odps.df import DataFrame as odpsdf
- from datetime import datetime as dt
- import datetime
- import process_feature
- import _pickle as cPickle
- def getRovfeaturetable(dt, table):
- odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'usercdm',
- endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
- read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
- featureArray = []
- for record in odps.read_table(table, partition='dt=%s' % dt):
- valueFeature = {}
- for i in process_feature.featurename:
- if i == 'dt':
- valueFeature[i] = dt
- else:
- valueFeature[i] = record[i]
- featureArray.append(valueFeature)
- featureArray = pd.DataFrame(featureArray)
- print(dt, table, 'feature table finish')
- return featureArray
- def getdatasample(date, max_range, table):
- new_date = dt.strptime(date, '%Y%m%d')
- datelist = []
- testlist = []
- for i in range(0, max_range):
- delta = datetime.timedelta(days=i)
- tar_dt = new_date - delta
- datelist.append(tar_dt.strftime("%Y%m%d"))
- for tm in datelist:
- testlist.append(getRovfeaturetable(tm, table))
- data = pd.concat(testlist)
- data.reset_index(inplace=True)
- data = data.drop(axis=1, columns='index')
- return data
- def clean_data(df):
- y = df['futre7dayreturn']
- df_vids = df['videoid']
- #drop string
- x = df.drop(['videoid', 'videotags', 'videotitle', 'videodescr', 'videodistribute_title', 'videoallwords', 'words_without_tags'])
- #drop future
- x = df.drop(['futr5viewcount', 'futr5returncount', 'futre7dayreturn'])
- return x, y , df_vids
- def train(x,y):
- X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
- params = {
- "objective": "regression",
- "metric": "rmse",
- "num_leaves": 30,
- "learning_rate": 0.1,
- "bagging_fraction": 0.7,
- "feature_fraction": 0.7,
- "bagging_frequency": 5,
- "bagging_seed": 2018,
- "verbosity": -1
- }
- lgtrain = lgb.Dataset(X_train, label=y_train)
- lgval = lgb.Dataset(X_test, label=y_test)
- evals_result = {}
- model = lgb.train(params, lgtrain, 10000, valid_sets=[lgval], early_stopping_rounds=100, verbose_eval=20,
- evals_result=evals_result)
- pred_test_y = model.predict(X_test, num_iteration=model.best_iteration)
- err_mape = mean_absolute_percentage_error(y_test, pred_test_y)
- r2 = r2_score(y_test, pred_test_y)
- print('err_mape', err_mape)
- print('r2', r2)
- return pred_test_y, model, evals_result
-
- if __name__ == '__main__':
- with open(r"train_data.pickle", "rb") as input_file:
- train_data = cPickle.load(input_file)
- with open(r"predict_data.pickle", "rb") as input_file:
- predict_data = cPickle.load(input_file)
- #train
- x,y,_ = clean_data(train_data)
- train(x, y)
|