123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- import numpy as np
- import pandas as pd
- from scipy.optimize import minimize
- from sklearn.metrics import r2_score
- from sklearn.model_selection import train_test_split
- import pickle
- all_feature_names = ["1_vovh0", "2_vovh0", "2_vovh1", "3_vovh0", "3_vovh1", "3_vovh2", "4_vovh0", "4_vovh1", "4_vovh2",
- "4_vovh3", "6_vovh0", "6_vovh1", "6_vovh6", "12_vovh0", "12_vovh1", "12_vovh12", "24_vovh0",
- "24_vovh1", "24_vovh2", "24_vovh3", "24_vovh6", "24_vovh12", "24_vovh24", "48_vovh0", "48_vovh1",
- "48_vovh2", "48_vovh3", "48_vovh6", "48_vovh12", "48_vovh24", "48_vovh48", "1_vovd0", "2_vovd0",
- "3_vovd0", "4_vovd0", "5_vovd0", "2_vovd1", "3_vovd1", "4_vovd1", "5_vovd1", "3_vovd2", "4_vovd2",
- "5_vovd2", "1_vovh_分母", "1_vovh0分子", "2_vovh_分母", "2_vovh0分子", "2_vovh1分子",
- "3_vovh_分母", "3_vovh0分子", "3_vovh1分子", "3_vovh2分子", "4_vovh_分母", "4_vovh0分子",
- "4_vovh1分子", "4_vovh2分子", "4_vovh3分子", "6_vovh_分母", "6_vovh0分子", "6_vovh1分子",
- "6_vovh6分子", "12_vovh_分母", "12_vovh0分子", "12_vovh1分子", "12_vovh12分子", "24_vovh_分母",
- "24_vovh0分子", "24_vovh1分子", "24_vovh2分子", "24_vovh3分子", "24_vovh6分子", "24_vovh12分子",
- "24_vovh24分子", "48_vovh_分母", "48_vovh0分子", "48_vovh1分子", "48_vovh2分子", "48_vovh3分子",
- "48_vovh6分子", "48_vovh12分子", "48_vovh24分子", "48_vovh48分子", "1_vovd0_分母", "1_vovd0_分子",
- "2_vovd0_分母", "2_vovd0_分子", "3_vovd0_分母", "3_vovd0_分子", "4_vovd0_分母", "4_vovd0_分子",
- "5_vovd0_分母", "5_vovd0_分子", "2_vovd1_分母", "2_vovd1_分子", "3_vovd1_分母", "3_vovd1_分子",
- "4_vovd1_分母", "4_vovd1_分子", "5_vovd1_分母", "5_vovd1_分子", "3_vovd2_分母", "3_vovd2_分子",
- "4_vovd2_分母", "4_vovd2_分子", "5_vovd2_分母", "5_vovd2_分子"]
- # feature_names = ["1_vovh0",
- # "2_vovh0", "2_vovh1",
- # "3_vovh0", "3_vovh1", "3_vovh2",
- # "4_vovh0", "4_vovh1", "4_vovh2", "4_vovh3",
- # "6_vovh0", "6_vovh1", "6_vovh6",
- # "12_vovh0", "12_vovh1", "12_vovh12",
- # "24_vovh0", "24_vovh1", "24_vovh2", "24_vovh3", "24_vovh6", "24_vovh12", "24_vovh24",
- # "48_vovh0", "48_vovh1", "48_vovh2", "48_vovh3", "48_vovh6", "48_vovh12", "48_vovh24", "48_vovh48",
- # "1_vovd0", "2_vovd0", "3_vovd0",
- # "2_vovd1", "3_vovd1"
- # ]
- feature_names = ["1_vovh0",
- "2_vovh0", "2_vovh1",
- "3_vovh1", "3_vovh2",
- "4_vovh1", "4_vovh3",
- "6_vovh1", "6_vovh6",
- "12_vovh1", "12_vovh12",
- "24_vovh1", "24_vovh2", "24_vovh3", "24_vovh6", "24_vovh12", "24_vovh24",
- "48_vovh1", "48_vovh2", "48_vovh3", "48_vovh6", "48_vovh12", "48_vovh24", "48_vovh48",
- "1_vovd0",
- "2_vovd1", "3_vovd1"
- ]
- dt_list = ['20241014', '20241015', '20241016']
- hh_list = ["00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12",
- "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23"]
- pd.set_option('display.max_rows', None) # 显示所有行
- pd.set_option('display.max_columns', None) # 显示所有列
- # 1. 加载数据
- def load_data(filepath: str) -> pd.DataFrame:
- return pd.read_csv(filepath)
- # 2. 数据预处理
- def preprocess_data(df, features, target):
- df_sorted = df.sort_values(by=target, ascending=False)
- x = df_sorted[features]
- y = df_sorted[target]
- top_k = df_sorted.head(100)
- return x, y, top_k
- # 3. 计算相关系数
- def calculate_correlations(df, features, target):
- correlations = {}
- for feature in features:
- # 删除 target 或 feature 列中任一为空的行
- valid_data = df[[target, feature]].dropna()
- # 如果没有有效数据,相关系数设为 0
- if len(valid_data) == 0:
- correlations[feature] = 0
- else:
- # 计算相关系数
- corr = valid_data[target].corr(valid_data[feature])
- correlations[feature] = corr if not np.isnan(corr) else 0
- # 转换为 Series 并按绝对值大小排序
- corr_series = pd.Series(correlations).abs().sort_values(ascending=False)
- return corr_series
- # 4. 定义动态加权和函数
- def dynamic_weighted_sum(features, weights):
- valid_features = ~np.isnan(features)
- if np.sum(valid_features) == 0:
- return np.nan
- normalized_weights = weights[valid_features] / np.sum(weights[valid_features])
- return np.sum(features[valid_features] * normalized_weights)
- # 5. 定义损失函数
- def mse_loss(y_true, y_pred):
- valid = ~np.isnan(y_true) & ~np.isnan(y_pred)
- return np.mean((y_true[valid] - y_pred[valid]) ** 2)
- # 6. 定义目标函数
- def objective(weights, X, y_true):
- y_pred = np.array([dynamic_weighted_sum(x, weights) for x in X.values])
- return mse_loss(y_true, y_pred)
- # 7. 搜索最佳权重
- def find_best_weights(X, y, initial_weights):
- result = minimize(objective, initial_weights, args=(X, y), method='Nelder-Mead')
- return result.x
- # 8. 评估模型
- def evaluate_model(X, y, weights):
- y_pred = np.array([dynamic_weighted_sum(x, weights) for x in X.values])
- valid = ~np.isnan(y) & ~np.isnan(y_pred)
- r2 = r2_score(y[valid], y_pred[valid])
- mse = mse_loss(y, y_pred)
- return r2, mse
- # 9. 保存模型
- def save_model(weights, features, file_path):
- model = {
- 'weights': weights,
- 'features': features,
- }
- with open(file_path, 'wb') as f:
- pickle.dump(model, f)
- # 10. 加载模型
- def load_model(file_path):
- with open(file_path, 'rb') as f:
- model = pickle.load(f)
- return model['weights'], model['features']
- def single_dt_handle(dt, df: pd.DataFrame):
- x, y, top_key = preprocess_data(df, feature_names, "vovh24")
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
- correl = calculate_correlations(top_key, feature_names, "vovh24")
- print(f"{dt} Feature Correlations: ")
- print(correl.head(5))
- initial_weights = correl[feature_names].values
- best_weights = find_best_weights(x_train, y_train, initial_weights)
- # 评估模型
- r2_train, mse_train = evaluate_model(x_train, y_train, best_weights)
- r2_test, mse_test = evaluate_model(x_test, y_test, best_weights)
- print(f"\nTrain R² Score: {r2_train:.4f}, MSE: {mse_train:.4f}")
- print(f"Test R² Score: {r2_test:.4f}, MSE: {mse_test:.4f}")
- # 输出特征重要性
- print("\nFeature importance:")
- for feature, weight in zip(feature_names, best_weights):
- print(f"{feature}: {weight:.4f}")
- # 保存模型
- save_model(pd.Series(best_weights, index=feature_names), feature_names,
- '/Users/zhao/Desktop/vov/model/vovh24_linear_weighted_model.pkl')
- # 测试加载模型
- loaded_weights, loaded_features = load_model('/Users/zhao/Desktop/vov/model/vovh24_linear_weighted_model.pkl')
- print("\nLoaded model weights:")
- for feature, weight in loaded_weights.items():
- print(f"{feature}: {weight:.4f}")
- def _main():
- df_dict = {}
- for dt in dt_list:
- for hh in hh_list:
- key = f"{dt}{hh}"
- df = load_data(f"/Users/zhao/Desktop/vov/{key}.csv")
- df_dict[key] = df
- for key in df_dict:
- single_dt_handle(key, df_dict[key])
- return
- if __name__ == '__main__':
- _main()
|