123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398 |
- import concurrent.futures
- import json
- import logging
- from datetime import datetime, timedelta
- import pandas as pd
- import numpy as np
- import xgboost as xgb
- from client import ODPSClient
- from config import ConfigManager
- from helper import RedisHelper
- from util import feishu_inform_util
- odps_client = ODPSClient.ODPSClient()
- config_manager = ConfigManager.ConfigManager()
- features_name = ['1_vov0', '2_vov0', '3_vov0', '4_vov0', '5_vov0', '2_vov01', '3_vov01', '4_vov01', '5_vov01',
- '3_vov012', '4_vov012', '5_vov012', "12_change", "23_change", "34_change", '2_vov01', '3_vov01',
- '4_vov01', '5_vov01', '3_vov012', '4_vov012', '5_vov012']
- column_names = ['曝光占比', 'vov0', '分子', '分母', '1_vov0', '2_vov0', '3_vov0', '4_vov0', '5_vov0', '2_vov01',
- '3_vov01', '4_vov01', '5_vov01', '3_vov012', '4_vov012', '5_vov012', '1_vov0_分子', '1_vov0_分母',
- '2_vov0_分子', '2_vov0_分母', '3_vov0_分子', '3_vov0_分母', '4_vov0_分子', '4_vov0_分母',
- '5_vov0_分子', '5_vov0_分母', '2_vov01_分子', '2_vov01_分母', '3_vov01_分子', '3_vov01_分母',
- '4_vov01_分子', '4_vov01_分母', '5_vov01_分子', '5_vov01_分母', '3_vov012_分子', '3_vov012_分母',
- '4_vov012_分子', '4_vov012_分母', '5_vov012_分子', '5_vov012_分母']
- # 创建一个logger
- logger = logging.getLogger("vov_xgboost_train.py")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- def get_partition_df(table, dt):
- logger.info(f"开始下载: {table} -- {dt} 的数据")
- download_session = odps_client.get_download_session(table, dt)
- logger.info(f"表: {table} 中的分区 {dt}, 共有 {download_session.count} 条数据")
- with download_session.open_arrow_reader(0, download_session.count) as reader:
- # 将所有数据加载到 DataFrame 中
- df = pd.concat([batch.to_pandas() for batch in reader])
- logger.info(f"下载结束: {table} -- {dt} 的数据, 共计 {df.shape[0]} 条数据")
- return df
- def fetch_label_data(label_datetime: datetime):
- """
- 获取 label数据
- :return:
- """
- label_dt = label_datetime.strftime("%Y%m%d")
- logger.info(f"fetch_label_data.dt: {label_dt}")
- # 获取数据
- label_df = get_partition_df("alg_vid_vov_new", label_dt)
- extracted_data = [
- {
- 'vid': int(row['vid']),
- }
- for _, row in label_df.iterrows()
- ]
- # 构造新的 DataFrame
- applied_df = pd.DataFrame(extracted_data)
- # 添加 title 列
- applied_df['title'] = "title"
- return applied_df
- def fetch_view_rate_data(view_date: datetime):
- """
- 获取曝光数据
- :return:
- """
- view_rate_dt = view_date.strftime("%Y%m%d")
- logger.info(f"fetch_view_rate_date.dt: {view_rate_dt}")
- try:
- # 获取数据
- view_rate_df = get_partition_df("alg_vid_vov_new", view_rate_dt)
- extracted_data = [
- {
- 'vid': int(row['vid']),
- '分母': int(feature['1_vov0_分母']),
- '分子': feature['1_vov0_分子'],
- 'vov0': feature['1_vov0']
- }
- for _, row in view_rate_df.iterrows()
- if (feature := json.loads(row['feature']))
- ]
- # 构造新的 DataFrame
- applied_df = pd.DataFrame(extracted_data)
- # 计算曝光占比,矢量化操作
- view_sum = applied_df['分母'].sum()
- applied_df['曝光占比'] = applied_df['分母'] / view_sum
- return applied_df
- except Exception as e:
- return pd.DataFrame({
- "vid": [-1],
- "分母": [0],
- "分子": [0],
- "vov0": [0],
- "曝光占比": [0]
- })
- def fetch_feature_data_dt(dt: str, index):
- """
- 查询某一天的特征数据,方便做特征数据时并行处理
- :param dt:
- :param index:
- :return:
- """
- logger.info(f"开始处理 videoid_vov_base_data -- {dt} 的数据")
- df = get_partition_df("videoid_vov_base_data", dt).fillna(0)
- today_dist_view_pv = df['today_dist_view_pv'].astype(int)
- today_return_to_dist_view_pv = df['today_return_to_dist_view_pv'].astype(int)
- day1_return_to_dist_view_pv = df['day1_return_to_dist_view_pv'].astype(int)
- day2_return_to_dist_view_pv = df['day2_return_to_dist_view_pv'].astype(int)
- # all_return_to_dist_view_pv
- t_1_all_return_to_dist_view_pv = today_return_to_dist_view_pv + day1_return_to_dist_view_pv
- t_2_all_return_to_dist_view_pv = t_1_all_return_to_dist_view_pv + day2_return_to_dist_view_pv
- # all_vov
- t_0_all_vov = today_return_to_dist_view_pv / today_dist_view_pv.where(today_dist_view_pv > 0, 1)
- t_0_all_vov = t_0_all_vov.where(today_dist_view_pv > 0, 0)
- t_1_all_vov = t_1_all_return_to_dist_view_pv / today_dist_view_pv.where(today_dist_view_pv > 0, 1)
- t_1_all_vov = t_1_all_vov.where(today_dist_view_pv > 0, 0)
- t_2_all_vov = t_2_all_return_to_dist_view_pv / today_dist_view_pv.where(today_dist_view_pv > 0, 1)
- t_2_all_vov = t_2_all_vov.where(today_dist_view_pv > 0, 0)
- # 构造结果DataFrame
- result_df = pd.DataFrame({
- 'vid': df['videoid'],
- f'{index}_vov0': t_0_all_vov,
- f'{index}_vov0_分子': today_return_to_dist_view_pv,
- f'{index}_vov0_分母': today_dist_view_pv,
- f'{index}_vov01': t_1_all_vov,
- f'{index}_vov01_分子': t_1_all_return_to_dist_view_pv,
- f'{index}_vov01_分母': today_dist_view_pv,
- f'{index}_vov012': t_2_all_vov,
- f'{index}_vov012_分子': t_2_all_return_to_dist_view_pv,
- f'{index}_vov012_分母': today_dist_view_pv,
- })
- logger.info(f"完成处理 videoid_vov_base_data -- {dt} 的数据")
- return result_df
- def fetch_feature_data(t_1_datetime: datetime):
- """
- 获取feature数据
- :return:
- """
- logger.info(f"fetch_feature_data.label_datetime: {t_1_datetime.strftime('%Y%m%d')}")
- with concurrent.futures.ThreadPoolExecutor(5) as executor:
- t_1_feature_task = executor.submit(
- fetch_feature_data_dt, t_1_datetime.strftime("%Y%m%d"), 1
- )
- t_2_feature_task = executor.submit(
- fetch_feature_data_dt, (t_1_datetime - timedelta(days=1)).strftime("%Y%m%d"), 2
- )
- t_3_feature_task = executor.submit(
- fetch_feature_data_dt, (t_1_datetime - timedelta(days=2)).strftime("%Y%m%d"), 3
- )
- t_4_feature_task = executor.submit(
- fetch_feature_data_dt, (t_1_datetime - timedelta(days=3)).strftime("%Y%m%d"), 4
- )
- t_5_feature_task = executor.submit(
- fetch_feature_data_dt, (t_1_datetime - timedelta(days=4)).strftime("%Y%m%d"), 5
- )
- t_1_feature = t_1_feature_task.result()
- t_2_feature = t_2_feature_task.result()
- t_3_feature = t_3_feature_task.result()
- t_4_feature = t_4_feature_task.result()
- t_5_feature = t_5_feature_task.result()
- t_1_feature = t_1_feature[['vid', "1_vov0", "1_vov0_分子", "1_vov0_分母"]]
- t_2_feature = t_2_feature[
- ['vid', "2_vov0", "2_vov0_分子", "2_vov0_分母", "2_vov01", "2_vov01_分子", "2_vov01_分母"]
- ]
- return t_1_feature, t_2_feature, t_3_feature, t_4_feature, t_5_feature
- def fetch_data(label_datetime: datetime, feature_start_datetime: datetime, view_rate_datetime: datetime):
- with concurrent.futures.ThreadPoolExecutor(3) as executor:
- label_future = executor.submit(fetch_label_data, label_datetime)
- feature_future = executor.submit(fetch_feature_data, feature_start_datetime)
- view_rate_future = executor.submit(fetch_view_rate_data, view_rate_datetime)
- label_apply_df = label_future.result()
- t_1_feature, t_2_feature, t_3_feature, t_4_feature, t_5_feature = feature_future.result()
- view_rate = view_rate_future.result()
- df = (pd.merge(label_apply_df, view_rate, on="vid", how='left')
- .merge(t_1_feature, on="vid", how='left')
- .merge(t_2_feature, on="vid", how='left')
- .merge(t_3_feature, on="vid", how='left')
- .merge(t_4_feature, on="vid", how='left')
- .merge(t_5_feature, on="vid", how='left')
- )
- df.fillna(0, inplace=True)
- df.sort_values(by=['曝光占比'], ascending=False, inplace=True)
- for col in column_names:
- df[col] = pd.to_numeric(df[col], errors='coerce')
- df["12_change"] = df["1_vov0"] - df["2_vov0"]
- df["23_change"] = df["2_vov0"] - df["3_vov0"]
- df["34_change"] = df["3_vov0"] - df["4_vov0"]
- df["label"] = df["vov0"].apply(lambda x: 1 if x > 0.25 else 0)
- return df
- def xgb_multi_dt_data(t_1_label_dt: datetime):
- with concurrent.futures.ThreadPoolExecutor(3) as executor:
- logger.info(f"VOV模型特征数据处理:t_1_label_future.label_datetime: {t_1_label_dt.strftime('%Y%m%d')}")
- t_1_label_future = executor.submit(fetch_data, t_1_label_dt, t_1_label_dt - timedelta(1), t_1_label_dt)
- t_2_label_dt = t_1_label_dt - timedelta(1)
- logger.info(f"VOV模型特征数据处理:t_2_label_future.label_datetime: {t_2_label_dt.strftime('%Y%m%d')}")
- t_2_label_future = executor.submit(fetch_data, t_2_label_dt, t_2_label_dt - timedelta(1), t_2_label_dt)
- t_3_label_dt = t_1_label_dt - timedelta(2)
- logger.info(f"VOV模型特征数据处理:t_3_label_future.label_datetime: {t_3_label_dt.strftime('%Y%m%d')}")
- t_3_label_future = executor.submit(fetch_data, t_3_label_dt, t_3_label_dt - timedelta(1), t_3_label_dt)
- t_1_label_df = t_1_label_future.result()
- t_2_label_df = t_2_label_future.result()
- t_3_label_df = t_3_label_future.result()
- return pd.concat([t_1_label_df, t_2_label_df, t_3_label_df], ignore_index=True)
- def _main():
- logger.info(f"XGB模型训练")
- train_df = xgb_multi_dt_data((datetime.now() - timedelta(days=1)))
- trains_array = train_df[features_name].values
- trains_label_array = train_df['label'].values
- logger.info(f"特征获取完成,开始训练。 训练使用的数据量: {train_df.shape[0]}")
- model = xgb.XGBClassifier(
- n_estimators=1000,
- learning_rate=0.01,
- max_depth=5,
- min_child_weight=1,
- gamma=0,
- subsample=0.8,
- colsample_bytree=0.8,
- objective='binary:logistic',
- nthread=8,
- scale_pos_weight=1,
- random_state=2024,
- seed=2024,
- )
- model.fit(trains_array, trains_label_array)
- logger.info("获取评测数据")
- start_label_datetime = datetime.now() - timedelta(days=1)
- feature_start_datetime = start_label_datetime
- predict_df = fetch_data(start_label_datetime, feature_start_datetime, start_label_datetime)
- tests_array = predict_df[features_name].values
- y_pred = model.predict_proba(tests_array)[:, 1]
- predict_df["y_pred"] = y_pred
- condition_choose = (
- (predict_df['y_pred'] <= 0.1) &
- (
- (predict_df['2_vov0_分母'] > 50) |
- (predict_df['3_vov0_分母'] > 50) |
- (predict_df['4_vov0_分母'] > 50)
- ) &
- (
- (predict_df['1_vov0'] - predict_df['2_vov0'] < 0.1)
- )
- )
- profit_threshold = 0.3
- condition_choose_real = condition_choose & (predict_df['vov0'] <= profit_threshold)
- predict_df["condition_choose"] = condition_choose
- predict_df[["vid", "曝光占比", "vov0", "condition_choose"]].to_csv(
- f"{config_manager.project_home}/XGB/file/new_" + (datetime.now() - timedelta(days=1)).strftime("%Y%m%d"),
- sep="\t",
- index=False
- )
- choose_bad = condition_choose.sum()
- choose_bad_real_bad = condition_choose_real.sum()
- acc = choose_bad_real_bad / choose_bad
- logger.info(
- f"acc:{acc} "
- f"分子={choose_bad_real_bad} "
- f"分母={choose_bad} "
- f"总视频数={predict_df.shape[0]} "
- f"盈利计算标注vov0大于:{profit_threshold}"
- )
- surface = predict_df.loc[condition_choose, '曝光占比'].sum()
- surface_income = predict_df.loc[condition_choose_real, '曝光占比'].sum()
- logger.info(
- f"总影响面:{round(surface, 6)} "
- f"盈利影响面:{round(surface_income, 6)} "
- f"亏损影响面:{round(surface - surface_income, 6)}"
- )
- predict_df["profit_loss_value"] = predict_df['分母'] * (predict_df['vov0'] - profit_threshold)
- profit_loss_value = predict_df.loc[condition_choose, 'profit_loss_value'].sum()
- profit_value = predict_df.loc[condition_choose_real, 'profit_loss_value'].sum()
- logger.info(
- f"总盈亏:{round(profit_loss_value, 1)} "
- f"纯盈利:{round(profit_value, 1)} "
- f"纯亏损:{round(profit_loss_value - profit_value, 1)} "
- f"盈利效率:{round(profit_loss_value / profit_value, 6)}"
- )
- filtered_vid = predict_df.loc[condition_choose, 'vid'].unique()
- # 写入本地文件
- np.savetxt(
- f"{config_manager.project_home}/XGB/file/filtered_vid_{datetime.now().strftime('%Y%m%d')}.csv",
- filtered_vid,
- fmt="%d",
- delimiter=","
- )
- # 写入Redis
- redis_key = f"redis:lower_vov_vid:{datetime.now().strftime('%Y%m%d')}"
- logger.info(f"当前环境为: {config_manager.get_env()}, 要写入的Redis Key为: {redis_key}")
- host, port, password = config_manager.get_algorithm_redis_info()
- alg_redis = RedisHelper.RedisHelper(host=host, port=port, password=password)
- for vid in filtered_vid.tolist():
- alg_redis.add_number_to_set(redis_key, vid)
- alg_redis.set_expire(redis_key, 86400)
- if __name__ == '__main__':
- card_json = {
- "config": {},
- "i18n_elements": {
- "zh_cn": [
- {
- "tag": "markdown",
- "content": "",
- "text_align": "left",
- "text_size": "normal"
- }
- ]
- },
- "i18n_header": {
- "zh_cn": {
- "title": {
- "tag": "plain_text",
- "content": "XGB模型训练预测完成"
- },
- "template": "turquoise"
- }
- }
- }
- try:
- _main()
- msg_text = f"\n- 所属项目: model_monitor" \
- f"\n- 所属环境: {config_manager.get_env()}" \
- f"\n- 告警描述: VOV预测模型训练和预测完成, 用于低VOV视频过滤"
- card_json['i18n_elements']['zh_cn'][0]['content'] = msg_text
- except Exception as e:
- logger.error("VOV过滤XGB模型训练异常: ", e)
- msg_text = f"\n- 所属项目: model_monitor" \
- f"\n- 所属环境: {config_manager.get_env()}" \
- f"\n- 告警描述: VOV预测模型训练和预测失败, 用于低VOV视频过滤"
- card_json['i18n_header']['zh_cn']['template'] = "red"
- card_json['i18n_header']['zh_cn']["title"]['content'] = "XGB模型训练预测失败"
- card_json['i18n_elements']['zh_cn'][0]['content'] = msg_text
- # 发送通知
- # feishu_inform_util.send_card_msg_to_feishu(
- # webhook=config_manager.get_vov_model_inform_feishu_webhook(),
- # card_json=card_json
- # )
|