123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- import concurrent.futures
- import json
- import logging
- from datetime import datetime, timedelta
- import pandas as pd
- import xgboost as xgb
- from client import ODPSClient
- odps_client = ODPSClient.ODPSClient()
- features_name = ['1_vov0', '2_vov0', '3_vov0', '4_vov0', '5_vov0', '2_vov01', '3_vov01', '4_vov01', '5_vov01',
- '3_vov012', '4_vov012', '5_vov012', "12_change", "23_change", "34_change", '2_vov01', '3_vov01',
- '4_vov01', '5_vov01', '3_vov012', '4_vov012', '5_vov012']
- column_names = ['曝光占比', 'vov0', '分子', '分母', '1_vov0', '2_vov0', '3_vov0', '4_vov0', '5_vov0', '2_vov01',
- '3_vov01', '4_vov01', '5_vov01', '3_vov012', '4_vov012', '5_vov012', '1_vov0_分子', '1_vov0_分母',
- '2_vov0_分子', '2_vov0_分母', '3_vov0_分子', '3_vov0_分母', '4_vov0_分子', '4_vov0_分母',
- '5_vov0_分子', '5_vov0_分母', '2_vov01_分子', '2_vov01_分母', '3_vov01_分子', '3_vov01_分母',
- '4_vov01_分子', '4_vov01_分母', '5_vov01_分子', '5_vov01_分母', '3_vov012_分子', '3_vov012_分母',
- '4_vov012_分子', '4_vov012_分母', '5_vov012_分子', '5_vov012_分母']
- # 配置日志格式和日志级别
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- # 创建一个logger
- logger = logging.getLogger(__name__)
- def get_partition_df(table, dt):
- logger.info(f"开始下载: {table} -- {dt} 的数据")
- download_session = odps_client.get_download_session(table, dt)
- logger.info(f"表: {table} 中的分区 {dt}, 共有 {download_session.count} 条数据")
- with download_session.open_arrow_reader(0, download_session.count) as reader:
- # 将所有数据加载到 DataFrame 中
- df = pd.concat([batch.to_pandas() for batch in reader])
- logger.info(f"下载结束: {table} -- {dt} 的数据")
- return df
- def fetch_label_data(label_dt):
- """
- 获取 label数据
- :return:
- """
- logger.info(f"fetch_label_data.dt: {label_dt}")
- def extract_label(row):
- feature = json.loads(row['feature'])
- return pd.Series({
- 'vid': row['vid'],
- '分母': int(feature['1_vov0_分母']),
- "分子": feature['1_vov0_分子'],
- 'vov0': feature['1_vov0']
- })
- train_df = get_partition_df("alg_vid_vov_new", label_dt)
- applied_df = train_df.apply(extract_label, axis=1)
- # 计算曝光占比
- view_sum = applied_df['分母'].sum()
- applied_df['曝光占比'] = round(applied_df['分母'] / view_sum, 6)
- return applied_df
- def fetch_feature_data(feature_dt):
- """
- 获取feature数据
- :return:
- """
- logger.info(f"fetch_feature_data.dt: {feature_dt}")
- def extract_feature(row):
- feature = json.loads(row['feature'])
- return pd.Series({
- 'vid': row['vid'],
- **feature
- })
- feature_df = get_partition_df("alg_vid_vov_new", feature_dt)
- return feature_df.apply(extract_feature, axis=1)
- def fetch_data(label_datetime: datetime):
- label_dt = label_datetime.strftime("%Y%m%d")
- feature_dt = (label_datetime - timedelta(days=1)).strftime("%Y%m%d")
- with concurrent.futures.ThreadPoolExecutor(2) as executor:
- label_future = executor.submit(fetch_label_data, label_dt)
- feature_future = executor.submit(fetch_feature_data, feature_dt)
- label_apply_df = label_future.result()
- feature_apply_df = feature_future.result()
- df = pd.merge(label_apply_df, feature_apply_df, on="vid", how='left')
- df.fillna(0, inplace=True)
- df.sort_values(by=['曝光占比'], ascending=False, inplace=True)
- for col in column_names:
- df[col] = pd.to_numeric(df[col], errors='coerce')
- df["12_change"] = df["1_vov0"] - df["2_vov0"]
- df["23_change"] = df["2_vov0"] - df["3_vov0"]
- df["34_change"] = df["3_vov0"] - df["4_vov0"]
- feature_array = df[features_name].values
- df["label"] = df["vov0"].apply(lambda x: 1 if x > 0.25 else 0)
- label_array = df["label"].values
- return df, feature_array, label_array
- def _main():
- logger.info(f"XGB模型训练")
- df, trains_array, trains_label_array = fetch_data((datetime.now() - timedelta(days=2)))
- logger.info("特征获取完成,开始训练")
- model = xgb.XGBClassifier(
- n_estimators=100,
- learning_rate=0.01,
- max_depth=5,
- min_child_weight=1,
- gamma=0,
- subsample=0.8,
- colsample_bytree=0.8,
- objective='binary:logistic',
- nthread=8,
- scale_pos_weight=1,
- random_state=2024,
- seed=2024,
- )
- model.fit(trains_array, trains_label_array, verbose=True)
- logger.info("获取评测数据")
- df_test, tests_array, _ = fetch_data(datetime.now() - timedelta(days=1))
- y_pred = model.predict_proba(tests_array)[:, 1]
- df_test["y_pred"] = y_pred
- condition_choose = ((df_test['y_pred'] <= 0.2)
- # & ((df_test['1_vov0_分母'] > 50) | (df_test['2_vov0_分母'] > 50) | (df_test['3_vov0_分母'] > 50))
- & (df_test.index <= 10000)
- )
- profit_threshold = 0.3
- condition_choose_real = condition_choose & (df_test['vov0'] <= profit_threshold)
- df_test["condition_choose"] = condition_choose
- df_test[["vid", "曝光占比", "vov0", "condition_choose"]].to_csv(
- "new_" + (datetime.now() - timedelta(days=1)).strftime("%Y%m%d"), sep="\t", index=False)
- choose_bad = condition_choose.sum()
- choose_bad_real_bad = condition_choose_real.sum()
- acc = choose_bad_real_bad / choose_bad
- logger.info(
- f"acc:{acc} "
- f"分子={choose_bad_real_bad} "
- f"分母={choose_bad} "
- f"总视频数={df_test.size} "
- f"盈利计算标注vov0大于:{profit_threshold}"
- )
- surface = df_test.loc[condition_choose, '曝光占比'].sum()
- surface_income = df_test.loc[condition_choose_real, '曝光占比'].sum()
- logger.info(
- f"总影响面:{round(surface, 6)} "
- f"盈利影响面:{round(surface_income, 6)} "
- f"亏损影响面:{round(surface - surface_income, 6)}"
- )
- df_test["profit_loss_value"] = df_test['分母'] * (df_test['vov0'] - profit_threshold)
- profit_loss_value = df_test.loc[condition_choose, 'profit_loss_value'].sum()
- profit_value = df_test.loc[condition_choose_real, 'profit_loss_value'].sum()
- logger.info(
- f"总盈亏:{round(profit_loss_value, 1)} "
- f"纯盈利:{round(profit_value, 1)} "
- f"纯亏损:{round(profit_loss_value - profit_value, 1)} "
- f"盈利效率:{round(profit_loss_value / profit_value, 6)}"
- )
- if __name__ == '__main__':
- try:
- _main()
- except Exception as e:
- logger.error("VOV过滤XGB模型训练异常: ", e)
|