123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- # import argparse
- # import gzip
- # import os.path
- # from collections import OrderedDict
- #
- # import pandas as pd
- # from hdfs import InsecureClient
- #
- # client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
- #
- # SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_score_calibration_file")
- # PREDICT_CACHE_PATH = os.environ.get("PREDICT_CACHE_PATH", "/root/zhaohp/XGB/predict_cache")
- #
- #
- # def read_predict_from_local_txt(txt_file) -> list:
- # result = []
- # with open(txt_file, "r") as f:
- # for line in f.readlines():
- # sp = line.replace("\n", "").split("\t")
- # if len(sp) == 4:
- # label = int(sp[0])
- # cid = sp[3].split("_")[0]
- # score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
- # result.append({
- # "label": label,
- # "cid": cid,
- # "score": score
- # })
- # return result
- #
- #
- # def read_predict_from_hdfs(hdfs_path: str) -> list:
- # if not hdfs_path.endswith("/"):
- # hdfs_path += "/"
- # result = []
- # for file in client.list(hdfs_path):
- # with client.read(hdfs_path + file) as reader:
- # with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
- # for line in gz_file.read().decode("utf-8").split("\n"):
- # split = line.split("\t")
- # if len(split) == 4:
- # cid = split[3].split("_")[0]
- # label = int(split[0])
- # score = float(split[2].replace("[", "").replace("]", "").split(",")[1])
- # result.append({
- # "cid": cid,
- # "label": label,
- # "score": score
- # })
- #
- # return result
- #
- #
- # def _segment_v1(scores, step):
- # bins = []
- # for i in range(0, len(scores), int((len(scores) / step))):
- # if i == 0:
- # bins.append(0)
- # else:
- # bins.append(scores[i])
- # bins.append(1)
- # return list(OrderedDict.fromkeys(bins))
- #
- #
- # def segment_calc_diff_rate_by_score(df: pd.DataFrame, segment_file_path: str, step=100) -> [pd.DataFrame, pd.DataFrame]:
- # sored_df = df.sort_values(by=['score'])
- # # 评估分数分段
- # scores = sored_df['score'].values
- #
- # bins = _segment_v1(scores, step)
- #
- # # 等分分桶
- # # split_indices = np.array_split(np.arange(len(scores)), step)
- # # bins = [scores[index[0]] for index in split_indices] + [scores[split_indices[-1][-1]]]
- #
- # sored_df['score_segment'] = pd.cut(sored_df['score'], bins=bins)
- #
- # # 计算分段内分数的差异
- # group_df = sored_df.groupby("score_segment", observed=True).agg(
- # segment_label_sum=('label', 'sum'),
- # segment_label_cnt=('label', 'count'),
- # segment_score_avg=('score', 'mean'),
- # ).reset_index()
- # group_df['segment_true_score'] = group_df['segment_label_sum'] / group_df['segment_label_cnt']
- # group_df['segment_diff_rate'] = (group_df['segment_score_avg'] / group_df['segment_true_score'] - 1).mask(group_df['segment_true_score'] == 0, 0)
- #
- # # 完整的分段文件保存
- # csv_data = group_df.to_csv(sep="\t", index=False)
- # with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
- # writer.write(csv_data)
- #
- # filtered_df = group_df[(abs(group_df['segment_diff_rate']) >= 0.2) & (group_df['segment_label_cnt'] >= 1000)]
- # filtered_df = filtered_df[['score_segment', 'segment_diff_rate']]
- # # 每条曝光数据添加对应分数的diff
- # merged_df = pd.merge(sored_df, filtered_df, on="score_segment", how="left")
- #
- # merged_df['segment_diff_rate'] = merged_df['segment_diff_rate'].fillna(0)
- # return merged_df, filtered_df
- #
- #
- # def read_and_calibration_predict(predict_path: str) -> [pd.DataFrame, pd.DataFrame, pd.DataFrame]:
- # """
- # 读取评估结果,并进行校准
- # """
- # # 本地调试使用
- # # predicts = read_predict_from_local_txt(predict_path)
- # predicts = read_predict_from_hdfs(predict_path)
- # df = pd.DataFrame(predicts)
- #
- # # 模型分分段计算与真实ctcvr的dff_rate
- # predict_basename = os.path.basename(predict_path)
- # if predict_basename.endswith("/"):
- # predict_basename = predict_basename[:-1]
- # df, segment_df = segment_calc_diff_rate_by_score(df, segment_file_path=f"{SEGMENT_BASE_PATH}/{predict_basename}.txt", step=100)
- #
- # # 生成校准后的分数
- # df['score_2'] = df['score'] / (1 + df['segment_diff_rate'])
- #
- # # 按CID统计真实ctcvr和校准前后的平均模型分
- # grouped_df = df.groupby("cid").agg(
- # view=('cid', 'size'),
- # conv=('label', 'sum'),
- # score_avg=('score', lambda x: round(x.mean(), 6)),
- # score_2_avg=('score_2', lambda x: round(x.mean(), 6)),
- # ).reset_index()
- # grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
- #
- # return df, grouped_df, segment_df
- #
- #
- # def predict_local_save_for_auc(old_df: pd.DataFrame, new_df: pd.DataFrame):
- # """
- # 本地保存一份评估结果, 计算AUC使用
- # """
- # d = {"old": old_df, "new": new_df}
- # for key in d:
- # df = d[key][['label', "score"]]
- # df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_1.txt", sep="\t", index=False, header=False)
- # df = d[key][['label', "score_2"]]
- # df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_2.txt", sep="\t", index=False, header=False)
- #
- #
- # def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
- # old_df, old_group_df, old_segment_df = read_and_calibration_predict(old_predict_path)
- # new_df, new_group_df, new_segment_df = read_and_calibration_predict(new_predict_path)
- #
- # predict_local_save_for_auc(old_df, new_df)
- #
- # # 分段文件保存, 此处保留的最后使用的分段文件,不是所有的分段
- # new_segment_df.to_csv(calibration_file, sep='\t', index=False, header=False)
- #
- # # 字段重命名,和列过滤
- # old_group_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg'}, inplace=True)
- # new_group_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg'}, inplace=True)
- # old_group_df = old_group_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg']]
- # new_group_df = new_group_df[['cid', 'new_score_avg', 'new_score_2_avg']]
- #
- # merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
- #
- # # 计算与真实ctcvr的差异值
- # merged["(new-true)/true"] = (merged['new_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- # merged["(old-true)/true"] = (merged['old_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- #
- # # 计算校准后的模型分与ctcvr的差异值
- # merged["(new2-true)/true"] = (merged['new_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- # merged["(old2-true)/true"] = (merged['old_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- #
- # # 按照曝光排序,写入本地文件
- # merged = merged.sort_values(by=['view'], ascending=False)
- # merged = merged[[
- # 'cid', 'view', "conv", "true_ctcvr",
- # "old_score_avg", "new_score_avg", "(old-true)/true", "(new-true)/true",
- # "old_score_2_avg", "new_score_2_avg", "(old2-true)/true", "(new2-true)/true",
- # ]]
- #
- # # 根据文件名保存不同的格式
- # if analyse_file.endswith(".csv"):
- # merged.to_csv(analyse_file, index=False)
- # else:
- # with open(analyse_file, "w") as writer:
- # writer.write(merged.to_string(index=False))
- # print("0")
- #
- #
- # if __name__ == '__main__':
- # parser = argparse.ArgumentParser(description="model_predict_analyse_20241101.py")
- # parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
- # parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
- # parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
- # parser.add_argument("-cf", "--calibration_file", required=True, help="线上使用的segment文件保存路径")
- # args = parser.parse_args()
- #
- # _main(
- # old_predict_path=args.old_predict_path,
- # new_predict_path=args.new_predict_path,
- # calibration_file=args.calibration_file,
- # analyse_file=args.analyse_file
- # )
|